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ABSTRACT

Nowadays, various types of microphone array are used in
many applications. However, it is not easy to compare ar-
rays of different types because each array has been treated
by a specific theory depending on the type of an array. Al-
though several criteria have been proposed for microphone
arrays for evaluating and/or designing an array, most of them
are application-oriented criteria and the best configuration for
some criterion may not be a better one in the other criterion.
Therefore, an analysis and comparing method for microphone
arrays which does not depend on an array configuration and
application are necessary. In this paper, infinite-dimensional
SVD is proposed for analyzing and comparing properties of
arrays. The singular values and functions obtained by pro-
posed method show sampling property of an array and can be
unified criterion.

Index Terms— Helmholtz equation, plane wave approx-
imation, Herglotz wave function, singular value decomposi-
tion (SVD), analytic calculation.

1. INTRODUCTION

A microphone array is a quite fundamental device for acquir-
ing spatial information of a sound field. A lot of signal pro-
cessing methods effectively utilizing the spatial information
of sound have been investigated for many applications includ-
ing direction-of-arrival estimation, noise reduction, and blind
source separation [1–4]. While the most widely used micro-
phone array is two-channel because it is ubiquitous, an array
consists of more than two microphones is getting more and
more popular today [5].

Nowadays, various types of microphone array are used in
the above applications, such as linear, planar, spiral, spherical,
and random configurations. Arguably, some array configura-
tion must be better than the others. However, it is not easy to
compare arrays of different types because each array has been
treated by a specific theory depending on the type of an array.
Therefore, an analysis method for microphone arrays which
does not depend on an array configuration is necessary for the
comparison.

Several criteria have been proposed for microphone ar-
rays in the context of evaluating and/or designing an array
[6–22]. By quantifying effect of array signal processing meth-

ods, those criteria enable optimization of microphone posi-
tions to achieve better performance. Although they have been
proved to be useful in the literatures, there is one limitation:
most of them are application-oriented criteria. That is, the
best configuration for some criterion may not be a better one
in the other criterion. Such application dependent assessment
is useful for optimizing performance of a specific processing
method. Nevertheless, an application independent criterion of
characteristics of microphone arrays should also be important
for comparing and analyzing properties of arrays.

In this paper, a continuous analogous of the singular value
decomposition (SVD), namely infinite-dimensional SVD, is
proposed for analyzing microphone arrays. Since microphone
array signals of any sound field can be represented by a linear
transformation [see Eq. (14)], SVD of the transformation pro-
vides information of the sampling property of a microphone
array which does not depend on an application. Although it
can be regarded as decomposition of an infinite-dimensional
matrix, difficulty of calculation is totally avoided by analytic
solution.

2. SAMPLING OF SOUND FIELD AND
ITS PLANE WAVE REPRESENTATION

In linear acoustics, sound propagation is modeled by the wave
equation [23],

(
△− 1

c2
∂2

∂t2

)
p(x, t) = 0, (1)

where △ =
∑

n ∂
2/∂x2

n is the Laplace operator, t is time,
x = (x1, x2, x3) is position, p is sound pressure, and c is the
speed of sound. The Fourier transform on time variable Ft

converts Eq. (1) into the Helmholtz equation:
(
△+ k2

)
u(x,ω) = 0, (2)

where u = Ftp, k = ω/c is the wave number, and ω is the an-
gular frequency. For simplicity, the dependency on ω will be
omitted hereafter as u(x). Let the sound field u be sampled by
M microphones placed at {xm}Mm=1 as {u(xm)}Mm=1. Then,
the aim of this paper is to analyze the sampling property based
on the above physical model. For considering every function
satisfying Eq. (2), some convenient representation of the so-
lutions is necessary in order to make the problem tractable.
Here, plane waves are adopted for characterizing them.
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2.1. Plane wave approximation of sound field

It is well known that any solution to the homogeneous
Helmholtz equation can be approximated arbitrarily well
by linear combination of plane waves [24]:

u(x) ≈
N∑

n=1

αn exp(jk⟨x,νn⟩), (3)

where αn ∈ C，j =
√
−1，⟨·, ·⟩ is the standard inner prod-

uct, {νn}Nn=1 ⊂ S2 is set of unit vectors which corresponds
to the direction of propagation of the plane waves. By taking
the sampling into account, Eq. (3) becomes

u(xm) ≈
N∑

n=1

αn exp(jk⟨xm,νn⟩), (4)

which can be rewritten in a matrix form:

u = Hα, (5)

where α and u are respectively N - and M -dimensional col-
umn vectors defined as

α = [α1, α2, . . . , αN ]T , (6)

u = [u(x1), u(x2), . . . , u(xM )]T , (7)

and H is an M ×N matrix,

H =

⎡

⎢⎣
exp(jk⟨x1,ν1⟩) · · · exp(jk⟨x1,νN ⟩)

...
. . .

...
exp(jk⟨xM ,ν1⟩) · · · exp(jk⟨xM ,νN ⟩)

⎤

⎥⎦ . (8)

This equation shows that any sampled sound field u is related
to some α through H . Hence, analyzing the matrix H gives
information about the spaces where u and α are lying.

3. INFINITE-DIMENSIONAL SVD OF SOUND FIELD

As in the previous section, a sound field can be characterized
by the matrix H consisting of plane waves. Therefore, the
sampling property of a microphone array can be analyzed by
SVD of H . However, discrete sampling of ν ∈ S2 may cause
significant error in the analysis. In this section, an SVD-based
analysis method which does not involve such discrete approx-
imation is proposed.

3.1. Singular value decomposition (SVD)

For analyzing a matrix, one of the most popular methodolo-
gies is SVD which decomposes an M×N matrix A into three
matrices as

A = UΣV ∗, (9)

where U is an M ×M unitary matrix, Σ is an M ×M diag-
onal matrix, V is an N ×M column orthonormal matrix, and

V ∗ is conjugate transpose of V . This decomposition reveals
mapping properties of the matrix, and thus the sampling prop-
erty of a microphone array can be analyzed by decomposing
the corresponding matrix H .

However, Eq. (3) is just an approximation and not exact
when the summation is taken up to a finite integer. This
implies that accurate decomposition is impossible in prac-
tice even though one may increase N as much as the com-
putational resource allows 1. Indeed, we observed that re-
sults of the decomposition can be notably different depending
on N and choice of {νn}Nn=1. Therefore, it is necessary to
overcome the approximation error in order to achieve reliable
analysis which does not depend on the construction process
of the matrix.

3.2. Herglotz wave function and its operator as infinite
dimensional matrix

When the set {νn}Nn=1 is chosen properly, Eq. (3) can be
regarded as direct discretization of the Herglotz wave func-
tion [25]:

u(x) =

∫

S2
α(ν) exp(jk⟨x,ν⟩) dS(ν), (10)

where α is a square-integrable function defined on the unit
sphere S2. By defining an integral operator H as

(H α)(x) =

∫

S2
α(ν) exp(jk⟨x,ν⟩) dS(ν), (11)

Eq. (10) can be written as

u = H α. (12)

Since every solution u can be represented by the Herglotz
wave function [26], α can be considered as a representative
of the sound field.

In a similar manner to Eq. (4), sampled version of the Her-
glotz wave function can be defined as

u(xm) =

∫

S2
α(ν) exp(jk⟨xm,ν⟩) dS(ν), (13)

which is also denoted shortly as

u = HMα, (14)

where HM is the corresponding integral operator. This oper-
ator can be considered as the continuous analogous of the ma-
trix H as taking the limit N → ∞, i.e., HM can be regarded
as an M × ∞ matrix [27]. Therefore, the approximation er-
ror is overcome by decomposing the continuous version HM

instead of its approximation H . Then, the only issue for this
approach is a decomposition algorithm: how to decompose a
matrix whose dimension is not finite.

1Since {νn}Nn=1 is defined on the unit sphere, the perfectly uniform set
cannot be obtained except the five Platonic bodies (N ∈ {4, 6, 8, 12, 20}).
Therefore, one should suffer from error not only on the approximation in
Eq. (3) but also on the asymmetry of {νn}Nn=1 if N is finite.
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3.3. Infinite-dimensional SVD of sampled sound field

There are several routes for computing SVD. Since

AA∗ = UΣV ∗V ΣU∗ = UΣ2U∗, (15)

U and Σ can be obtained through eigendecomposition of
AA∗. Then, V is calculated from U and Σ as

Σ−1U∗A = Σ−1U∗UΣV ∗ = Σ−1ΣV ∗ = V ∗. (16)

Although HM is infinite-dimensional, HMH ∗
M becomes

a finite dimensional matrix which allows the ordinary matrix
decomposition. Therefore, SVD of HM can be calculated by
decomposing the M×M matrix HMH ∗

M and using Eq. (16).
Then, one has to evaluate HMH ∗

M whose (m,n)-th entry is

(HMH ∗
M )mn=

∫

S2
exp(jk⟨xm,ν⟩)exp(jk⟨xn,ν⟩) dS(ν)

=

∫

S2
exp(jk⟨xm− xn,ν⟩) dS(ν), (17)

where z is complex conjugate of z. In the above equation, the
inner product can be rewritten as

⟨xm− xn,ν⟩ = ∥xm− xn∥ cos(θ), (18)

where ∥ · ∥ =
√
⟨·, ·⟩ is the Euclidean norm, ∥ν∥ = 1 by

definition, and θ is the angle between the vectors. For sim-
plicity, let xm − xn be lying on the one-dimensional sub-
space (0, 0, x3). Then, the angle θ coincides with that of the
polar coordinate (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)). This
observation further simplifies Eq. (17) as

(HMH ∗
M )mn=

∫

S2
exp(jk⟨xm− xn,ν⟩) dS(ν)

=

∫ π

−π

∫ π

0
exp(jkd cos(θ)) sin(θ) dθdϕ

= 2π

∫ π

0
exp(jkd cos(θ)) sin(θ) dθ, (19)

where d = ∥xm− xn∥. This integration can be solved ana-
lytically:

(HMH ∗
M )mn= 2π

∫ π

0
exp(jkd cos(θ)) sin(θ) dθ

= 2π
[ j

kd
exp(jkd cos(θ))

]π
0

=
2π

kd

[
− sin(−kd) + sin(kd)

+ j cos(−kd)− j cos(kd)
]

= 4π
sin(kd)

kd
. (20)

Until here, the vector xm− xn has been assumed to be
on the one-dimensional subspace (0, 0, x3). Nevertheless, the

above result also holds for any vector because spherical inte-
gration is independent of rotation. That is, one may rotate the
coordinate first to set xm−xn on that subspace, and then the
same derivation can be applied to obtain the analytical solu-
tion. Therefore, (m,n)-th entry of the matrix HMH ∗

M is

(HMH ∗
M )mn = 4π sinc(k∥xm − xn∥), (21)

where sinc(x) = sin(x)/x if x ̸= 0, and sinc(0) = 1.
Since the matrix is real and symmetric, it can be diagonal-

ized by an orthonormal matrix U as

HMH ∗
M = UΣ2U∗. (22)

Then, m-th column of V , which is a continuous function on
the unit sphere, is obtained by Eq. (16) as

vm(ν) =
1

σm

M∑

ℓ=1

Uℓm exp(jk⟨xℓ,ν⟩), (23)

where V =[v1, v2, . . . , vM ], and Σ = diag(σ1,σ2, · · · ,σM ).
Note that Eq. (21) does not involve any approximation, and
therefore the obtained decomposition should be accurate up
to the machine precision.

4. NUMERICAL EXPERIMENT

In this section, the proposed method was applied to several
microphone arrays in order to show its property. Table 1 and
Fig. 1 show the microphone array configurations used here.
The sound speed was assumed to be 340 m/s.

Figure 2 shows normalized singular values {σm/σ1}Mm=1

of the sampling operator HM . Although all three cases con-
tain twelve singular values which coincide with the number
of microphones, some of them are overlapped and invisible.
For example, only three singular values are visible for low-
frequency part of the spherical microphone array because
their multiplicities are three, five, and three from top to bot-
tom. Note that the first normalized singular value always
overlaps with the ceiling as σ1/σ1 = 1.

Some specific frequencies related to the types of arrays,
the Nyquist frequency or Dirichlet eigenfrequencies, are also
depicted in Fig. 2 as vertical lines. A Dirichlet eigenfre-
quency is a frequency which may be problematic for array
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Fig. 1. The microphone arrays used in the numerical experi-
ment. Their details are listed in Table 1.
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Table 1. Configurations of the microphone arrays used in the numerical experiment. (a)–(c) correspond to that of Fig. 1.
array type configuration
(a) linear Line array consisting of microphones placed in a alignment of interval 0.1 m whose length is 1.1 m.
(b) planar Flat square array consisting of microphones placed at the square lattice of interval 0.1 m.
(c) sphere Spherical array consisting of microphones placed at quasi-uniform sampling points [28] on the

surface of a sphere whose radius is 0.1175 m.
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Fig. 2. Normalized singular values of the microphone arrays (a)–(c) in Fig. 1 and Table 1. The vertical lines of (a) and (b) show
the spatial Nyquist frequency, and those of (c) represent the Dirichlet eigenfrequencies of the sphere on which microphones lie.

signal processing using an open spherical array [21]. Inter-
estingly, some of those vertical lines agree with frequencies
where some singular values have extrema. This agreement
suggests that the singular values possibly indicate frequencies
where an array is not suitable.

Figure 3 illustrates each right singular function vm(ν) in
Eq. (23) weighted by corresponding singular value σm for 1.5
kHz. Since the right singular function is a continuous func-
tion on the sphere, its magnitude is represented by the radius.
These functions are basis elements of the infinite-dimensional
space where α lies. The shape of them seems to indicate some
symmetric properties of the arrays. For instance, as in Fig. 3
(a), rotational symmetry of the linear array can be seen from
the right singular functions. The symmetry of the front and
back side of the planar array is also apparent in Fig. 3 (b).
Therefore, right singular functions should provide an alterna-
tive method for qualitative assessment of a microphone array.

5. CONCLUSIONS
In this paper, we proposed the infinite-dimensional SVD
for analyzing microphone arrays. Although such infinite-
dimensional decomposition is not possible in general, the
proposed method enables a simple and easy algorithm to
compute it through analytic calculation of the integral. Some
interesting properties of the proposed decomposition can be
seen from the numerical examples. As is well known, SVD
is a quite fundamental and important tool for both theory and
application. Therefore, applying infinite-dimensional SVD
to many practical problems of a microphone array, and other
recent measurement techniques [29–31], is definitely the next
step which should be investigated in the future.

(a)

(b)

(c)

Fig. 3. Visual examples of the weighted right singular func-
tions {σmvm(ν)} of microphone arrays (a)–(c) for 1.5 kHz.
Magnitude of each function is represented by the radius.

179



6. REFERENCES

[1] T. Tachikawa, K. Yatabe and Y. Oikawa, “Coherence-adjusted
monopole dictionary and convex clustering for 3D localization
of mixed near-field and far-field sources,” in IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP), Mar. 2017.

[2] T. Tachikawa, K. Yatabe, Y. Ikeda and Y. Oikawa, “Sound
source localization based on sparse estimation and convex clus-
tering,” 5th Joint Meet. Acoust. Soc. Am. Acoust. Soc. Jpn.,
Hawaii, vol. 140, no. 4, p. 3451, 2016.

[3] A. Inoue, Y. Ikeda, K. Yatabe and Y. Oikawa, “Three-
dimensional sound-field visualization system using head
mounted display and stereo camera,” 5th Joint Meet. Acoust.
Soc. Am. Acoust. Soc. Jpn., Hawaii, vol. 140, no. 4, pp. 3195–
3196, 2016.

[4] Y. Tamura, K. Yatabe and Y. Oikawa, “Least-squares estima-
tion of sound source directivity using convex selector of a bet-
ter solution,” Acoust. Sci. & Tech., (to appear).

[5] Y. Koyano, K. Yatabe, Y. Ikeda, and Y. Oikawa, “Physical-
model based efficient data representation for many-channel mi-
crophone array,” in IEEE Int. Conf. Acoust. Speech Signal Pro-
cess. (ICASSP), Mar. 2016, pp. 370–374.

[6] M.F. Berger and H.F. Silverman, “Microphone array optimiza-
tion by stochastic region contraction,” IEEE Trans. Signal Pro-
cess., vol. 39, no. 11, pp. 2377–2386, Nov. 1991.

[7] S. Gazor and Y. Grenier, “Criteria for positioning of sensors
for a microphone array,” IEEE Trans. Speech Audio Process.,
vol. 3, no. 4, pp. 294–303, Jul. 1995.

[8] D.B. Ward, R.A. Kennedy, and R.C. Williamson, “Theory and
design of broadband sensor arrays with frequency invariant far-
field beam patterns,” J. Acoust. Soc. Am., vol. 97, no. 2, pp.
1023–1034, 1995.

[9] M.S. Brandstein, J.E. Adcock, and H.F. Silverman, “A
localization-error-based method for microphone-array design,”
in IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
May 1996, vol. 2, pp. 901–904 vol. 2.

[10] B. Rafaely, “Analysis and design of spherical microphone ar-
rays,” IEEE Trans. Speech Audio Process., vol. 13, no. 1, pp.
135–143, Jan. 2005.

[11] M.R. Bai, J.-H. Lin, and K.-L. Liu, “Optimized microphone
deployment for near-field acoustic holography: To be, or not
to be random, that is the question,” J. Sound Vib., vol. 329, no.
14, pp. 2809–2824, 2010.

[12] I. Kodrasi, T. Rohdenburg, and S. Doclo, “Microphone posi-
tion optimization for planar superdirective beamforming,” in
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2011, pp. 109–112.

[13] Z.G. Feng, K.-F.C. Yiu, and S.E. Nordholm, “Placement de-
sign of microphone arrays in near-field broadband beamform-
ers,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1195–
1204, March 2012.

[14] J. Yu and K.D. Donohue, “Geometry descriptors of irregu-
lar microphone arrays related to beamforming performance,”
EURASIP J. Adv. Signal Process., vol. 2012, no. 1, pp. 1–12,
2012.

[15] J. Yu and K.D. Donohue, “Optimal irregular microphone dis-
tributions with enhanced beamforming performance in immer-
sive environments,” J. Acoust. Soc. Am., vol. 134, no. 3, pp.
2066–2077, 2013.

[16] Z. Li, K.F.C. Yiu, and Z. Feng, “A hybrid descent method
with genetic algorithm for microphone array placement de-
sign,” Appl. Soft Comput., vol. 13, no. 3, pp. 1486–1490, 2013.

[17] S. Markovich-Golan, S. Gannot, and I. Cohen, “Performance
of the SDW-MWF with randomly located microphones in a re-
verberant enclosure,” IEEE Trans. Audio, Speech, Lang. Pro-
cess., vol. 21, no. 7, pp. 1513–1523, July 2013.

[18] M.B. Hawes and W. Liu, “Sparse array design for wideband
beamforming with reduced complexity in tapped delay-lines,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 22, no.
8, pp. 1236–1247, Aug. 2014.

[19] D. Ayllón, R. Gil-Pita, M. Utrilla-Manso, and M. Rosa-Zurera,
“An evolutionary algorithm to optimize the microphone array
configuration for speech acquisition in vehicles,” Eng. Appl.
Artif. Intell., vol. 34, pp. 37–44, 2014.

[20] M. Crocco and A. Trucco, “Design of superdirective pla-
nar arrays with sparse aperiodic layouts for processing broad-
band signals via 3-D beamforming,” IEEE/ACM Trans. Au-
dio, Speech, Lang. Process., vol. 22, no. 4, pp. 800–815, April
2014.

[21] G. Chardon, W. Kreuzer, and M. Noisternig, “Design of spatial
microphone arrays for sound field interpolation,” IEEE J. Sel.
Top. Signal Process., vol. 9, no. 5, pp. 780–790, Aug. 2015.

[22] K. Niwa, Y. Hioka, and K. Kobayashi, “Optimal microphone
array observation for clear recording of distant sound sources,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24, no.
10, pp. 1785–1795, Oct. 2016.

[23] L. J. Ziomek, “Fundamentals of Acoustic Field Theory
and Space-Time Signal Processing,” CRC Press, Boca Raton,
1995.

[24] A. Moiola, R. Hiptmair, and I. Perugia, “Plane wave ap-
proximation of homogeneous Helmholtz solutions,” Z. Angew.
Math. Phys., vol. 62, pp. 809–837, 2011.

[25] M. Ikehata, “The Herglotz wave function, the Vekua transform
and the enclosure method,” Hiroshima Math. J., vol. 35, pp.
485–506, 2005.

[26] D. Colton and R. Kress, “On the denseness of Herglotz
wave functions and electromagnetic Herglotz pairs in Sobolev
spaces,” Math. Meth. Appl. Sci., vol. 24, pp. 1289–1303, 2001.

[27] A. Townsend and L.N. Trefethen, “Continuous analogues of
matrix factorizations,” Proc. R. Soc. Lond. A, vol. 471, no.
2173, 2014.

[28] J. Fliege and U. Maier, “The distribution of points on the
sphere and corresponding cubature formulae,” IMA J. Numer.
Anal., vol. 19, pp. 317–334, 1999.

[29] K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa,
T. Onuma, H. Niwa and M. Yoshii, “High-speed imaging of
sound using parallel phase-shifting interferometry,” Opt. Ex-
press, vol. 24, no. 12, pp. 12922–12932, June 2016.

[30] N. Chitanont, K. Yatabe, K. Ishikawa and Y. Oikawa, “Spatio-
temporal filter bank for visualizing audible sound field by
Schlieren method,” Appl. Acoust., vol. 115, pp. 109–120, Jan.
2017.

[31] Y. Oikawa, K. Yatabe, K. Ishikawa and Y. Ikeda, “Optical
sound field measurement and imaging using laser and high-
speed camera,” Proc. 45th Int. Congr. Noise Control Eng.
(INTER-NOISE 2016), pp. 258–266, Hamburg, Aug. 2016.

180


