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ABSTRACT

Classic approaches to multi-channel signal enhancement
rely on model assumptions regarding speech source relative
transfer functions and noise covariance matrix, or on esti-
mates thereof obtained in, e.g., speech pauses. To alleviate
these constraints, we here investigate an approach to adaptive
estimation of the speech (target) source and noise related
acoustic parameters based on localized speech probability
estimates. The latter are computed from a discriminatively
trained speech localization algorithm previously proposed
[1]. A-priori knowledge of temporal segments that contain
noise only, thus, is not required. A standard MVDR system
is employed for subsequent signal enhancement.

Evaluation is carried out for anechoic and reverberant
conditions using 6-channel input signals recorded with a
bilateral hearing-aid geometry. Results indicate that the
proposed method outperforms an anechoic, isotropic-noise
model when a-priori information is unavailable: I.e., in (a)
anechoic conditions with localized interferer in addition to
isotropic noise, and (b) reverberant conditions. In these con-
ditions, the proposed method and constrained versions thereof
improve upon the free-field isotropic noise model by up to
16.1 dB and 7.7 dB SINR, respectively.

Index Terms— Acoustic source localization, multi-
microphone signal enhancement, machine learning for signal
processing

1. INTRODUCTION

An important component in multi-channel signal enhance-
ment systems is information about differences in sound prop-
agation from a target source to the sensors of a microphone
array. These relative transfer functions (RTF) are used to con-
duct spatial filtering, e.g., serve as steering vectors in beam-
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forming methods. In the context of hearing aid signal pro-
cessing, RTFs are influenced by acoustic transfer characteris-
tics of the head such that the interaural transfer function (ITF)
has to be considered. The ITF plays an important role for sig-
nal enhancement and sound reproduction in hearing aids [2].
In the former, it has to be taken into account during spatial
filtering since a free-field sound propagation assumption does
not hold. In the latter, preservation of the ITF or binaural cues
captured by the ITF is relevant due to their role in speech in-
telligibility in spatial conditions [3].

ITFs computed from head-related transfer functions
(HRTF) can serve as models to derive parameters for sig-
nal enhancement [4]. The same holds for assumptions about
background noise–as long as the surrounding noise field is
diffuse, assuming an isotropic noise model is robust.

However, the assumption of purely head-related informa-
tion is invalid when the acoustic scenario encompasses real
room characteristics including reverberation. In this case, it
can be beneficial to estimate ITFs from the data. In case that
noise contains localized interfering sources, an isotropic noise
model is less effective and spatial filter and noise character-
istics need to be estimated from the input data. A single-
channel method for noise estimation is minimum statistics
[5, 6], which relies on the assumption that speech variations
are faster than changes in noise power spectral density (PSD).
The case of non-stationary noise has also been tackled by in-
corporating speech presence probability (SPP), cf. [7, 8, 9]
where noise is estimated in minima of speech activity or based
on estimates of the SNR [10]. The aforementioned meth-
ods have been shown to be robust. If the interfering sound
also contains speech, SPP information becomes unreliable
and variations in the interfering sound are correlated to varia-
tions of the target, making it difficult to find optimal smooth-
ing parameters for minimum statistics estimates. A multi-
channel sensor setup provides the possibility to identify a tar-
get by location-related information. E.g. the maximum peak
position of cross-correlation functions between a sensor pair
can be used to identify target source activation [11].
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Fig. 1. Processing diagram of the proposed algorithm.

In the proposed approach, we use spatial speech pres-
ence probability to obtain a direct estimate of the target
source steering vector for a six-channel hearing aid setup.
In order to enhance the target signal and reduce interference
from other sound sources, minimum-variance-distortionless-
response (MVDR) signal enhancement is performed. An
estimate of the noise covariance matrix, which is essential
for MVDR processing, encodes information about the noise
field and is obtained by estimating the noise covariance ma-
trix with a probabilistic weighting that is inversely related
to target source activity. Acoustic scenarios including one
target source and combinations of a diffuse noise field and
a localized interfering talker in an anechoic and a reverber-
ant office room were investigated. The proposed parameter
estimation method and use of model-based spatial filters, as
well as combinations of both were compared in these scenar-
ios. Results show that probabilistic estimation of the spatial
filters outperforms model-based approaches if exact a-priori
information is unavailable.

2. METHODS

The method proposed here is conducted in four steps, cf.
Fig. 1: First, a spatio-temporal analysis of the acoustic scene
is conducted with a probabilistic source localization method
that estimates for each time-point n and discretized loca-
tion index θ the a-posteriori probability of speech and, thus,
permits identification of the maximum-a-posteriori speech
source location. Estimated speech probability is used subse-
quently to determine the corresponding (generalized) speech
covariance matrix as well as the noise-covariance matrix
induced by interfering sources. Multi-channel signal en-
hancement is then carried out with filter parameters obtained
from the estimated covariance matrices.

2.1. Probabilistic source localization

Reliable estimation of spatially localized speech source prob-
ability is the first step in the proposed method which the sub-
sequent steps build upon. We here employ the discriminative

classification approach to probabilistic sound source localiza-
tion described in [1]. It estimates the a-posteriori probability
of speech for a defined set of source locations θ using short-
term generalized cross-correlation [12] with phase transform
(GCC-PHAT) as input features. These are used to train a bank
of discriminative linear support-vector machine (SVM) clas-
sifiers, with presence and absence of a speech source for a
given position serving as the training class label. Each SVM
is followed by a generalized linear model (GLM) classifier,
that converts SVM decision values into the estimated spatial
source probability map pS(θ, n). Let Gθ(·) denote the com-
bined localizer for direction θ as described above, then the
source probability map is given by

pS(θ, n) = Gθ(x(n, k)) (1)

for location index θ, time frame index n, spectral band index
k and multi-channel STFT input vector x(n, k).

2.2. Speech and noise covariance matrix estimation

Knowledge of the localizer Gθ(·) corresponds to implicit
knowledge of a spatial source model. However, a model that
is appropriate for source localization does not necessarily im-
ply knowledge of spatial filter parameters that would permit
to optimally enhance a target speech source and maximally
attenuate interference from other sound sources. For one,
the learned localization model may not be precise enough
for spatial signal enhancement. In realistic applications, we
may further wish to utilize a localiztion model trained in one
environment (e.g., under anechoic conditions) also in other
more realistic test conditions for signal enhancement. How-
ever, the spatial source model learned by the localizer Gθ(·)
does contain valuable information that should be maximally
exploited in order to perform fast and robust spatial signal
enhancement in realistic situations.

To this end, we present a novel approach for estimation of
spatial filters from the multi-channel input signals without use
of an explicit model of sound propagation, while still exploit-
ing the source probability map obtained in Sec. 2.1 and the
learned knowledge about spatial source positions that is im-
plicitly encoded in it. The estimated speech probability map
values pS(θ, n) are used as weights to compute a generalized
speech covariance matrix Φ(k|θ) conditioned on speech di-
rection θ, with ij-element

[Φ(k|θ)]ij ≡
1

N

N∑
n=1

pS(θ, n) cij(n, k)
−1 x∗i (n, k)xj(n, k)

(2)
where the average is computed over N contiguous STFT
frames and cij(n, k)−1 are spectral weights. Choosing

cij(n, k) = |xi(n, k)| |xj(n, k)|, (3)

we obtain a measure similar to the normalized cross-power
spectrum as used in [13, 14], albeit conditioned on location θ.
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Speech covariance Noise covariance

PrS+PrN prob. model (Eq. 2) prob. model (Eq. 5)
FfS+PrN free-field HRTF model prob. model (Eq. 5)
PrS+IsoN prob. model (Eq. 2) isotr. model
FfS+IsoN free-field HRTF model isotr. model

Table 1. Summary of combined models for generalized
speech covariance and noise covariance estimation, that were
investigated experimentally.

In order to compute in an analogous way the noise co-
variance matrix conditioned on speech source direction θ, we
define a robust estimate of noise probability pN(θ, n) as

pN(θ, n) =

{
γ (1− pS(θ, n)), pS(θ, n) < p0

0, pS(θ, n) ≥ p0
(4)

with a confidence threshold p0 and scaling factor γ. The ij-
element [R(k|θ)]ij of θ-conditioned noise covariance matrix
R(k|θ) is estimated as

[R(k|θ)]ij =
1

N

N∑
n=1

pN(θ, n)x∗i (n, k)xj(n, k). (5)

2.3. Multi-channel signal enhancement

While the proposed scheme is not specific to a particu-
lar multi-channel enhancement algorithm, we employ the
minimum-variance distortionless-response (MVDR) method.
In the spectral domain implementation used here, it uses
a projection operator w(θ, k) that is applied to the multi-
channel short-term Fourier transform x(n, k) of the input
signals. Output signals are obtained as

y(n, k|θ) = wH(k|θ)x(n, k). (6)

The projection operator w is obtained from a steering vector
d and noise covariance matrix R as

w(k|θ) = R−1(k|θ)d(k|θ)
dH(k|θ)R−1(k|θ)d(k|θ)

. (7)

The steering vector d(k|θ) for speech source direction θ is
obtained from the generalized speech covariance matrix Eq. 2
by choosing an arbitrary but fixed reference channel i∗ and
extracting the normalized i∗-th row elements according to

dj(k|θ) = [Φ(k|θ)]i∗j / |[Φ(k|θ)]i∗j |, (8)

retaining inter-microphone phase and neglecting (possible)
level differences. The maximum-a-posteriori speech position
θ∗ was chosen as the location value for the MVDR filter.

For baseline comparison, steering vector and noise-
covariance were also derived from an anechoic free-field
model with head-related transfer functions (in case of d)
and a free-field isotropic noise model (in case of R). See
Tab. 1 for a summary of investigated conditions for combined
source- and noise-model.

3. EXPERIMENTS

We evaluated the signal enhancement performance of the
MVDR beamformer (7) with parameters estimated by all
approaches summarized in Tab. 1. A six-channel binaural
hearing aid geometry setup was used for MVDR beamform-
ing of which four channels (front and rear microphone pairs)
were employed for estimation of the spatial source proba-
bility map as described in [1] with discrete azimuth angles
θ = 0◦, . . . , 355◦ in steps of 5◦. STFT frame length was
10 ms with 25 % shift. For the estimation of the steering vec-
tor and the noise covariance matrix, we utilized the a-priori
known target DOA, indicated by θ̂, to select either the accord-
ing probability weighting from the map for the estimation or
the model steering vector. Groundtruth DOA values were
used in order to separate localization accuracy [1] from the
filter estimation approach pursued here. As reference channel
in the spatial filter, the left frontal hearing aid microphone
was used. The parameters for the noise covariance estimation
were set to p0 = 0.99 and γ = (1 − p0)/maxt∈T (p(θ̂, n))
with T containing all 10 ms-samples from the current test
signal. No temporal smoothing, apart from the weighting
with pS(θ, n) and pN (θ, n), was used.

3.1. Acoustic Data

All acoustic signals used in the experiments were generated
by filtering single-channel speech signals with head-related
impulse responses (HRIR) captured with a binaural hearing
aid setup with three microphones on each side of the head
[15]. Measurements for various source positions from two
different environments were used: an anechoic chamber and
an office room. Three-seconds-long speech signals, each
from the same (female or male) speaker, were randomly sam-
pled from the TIMIT speech database [16]. A head-related
isotropic noise field was obtained by convolution of speech
shaped noise [17] with anechoic HRIRs from the whole hori-
zontal plane. Processing was performed at a sampling rate of
16 kHz.
The resulting signals were combined to a set of test scenarios
containing a target speech source, an interfering speaker from
a different position and isotropic noise. Thereby the energy
ratio between target and interferer, signal-to-interference ratio
(SIR), was varied between −10 dB, 0 dB, 10 dB and ∞dB,
as well as the energy ratio between target and noise field,
signal-to-noise-ratio (SNR). The resulting overall acoustic
complexity is then represented by the signal-to-noise-plus-
interferer-ratio (SINR). In the anechoic environment, the
target was located in the left semi-circle at DOAs ranging
from −180◦ (back) to 0◦ (front) in steps of 30◦. The interfer-
ing speaker occurred on the whole circle around the head in
the range from −165◦ to +165◦ in steps of 30◦. In the office
environment the source locations were limited to the frontal
semi-circle, such that the target position ranged from −90◦
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Anechoic environment

Input SINR improvement (dB)
SIR SNR PrS FfS PrS FfS

(dB) (dB) +PrN +PrN +IsoN +IsoN

-10 -10 3.0 9.6 -1.0 6.9
-10 0 7.7 15.1 -1.5 8.9
-10 10 12.9 20.8 -0.8 10.0
-10 ∞ 18.6 26.3 0.8 10.2

0 -10 1.7 7.8 1.4 6.1
0 0 2.6 9.1 2.2 6.9
0 10 7.0 13.4 2.6 8.8
0 ∞ 16.3 20.8 3.7 10.2

10 -10 1.7 7.6 1.7 6.1
10 0 1.5 7.3 3.5 6.2
10 10 2.7 8.1 4.6 6.9
10 ∞ 12.9 14.7 5.8 10.2
∞ -10 1.9 7.6 1.7 6.1
∞ 0 0.9 7.1 3.5 6.1
∞ 10 2.2 6.3 4.6 6.1

Office environment

Input SINR improvement (dB)
SIR SNR PrS FfS PrS FfS

(dB) (dB) +PrN +PrN +IsoN +IsoN

-10 -10 6.0 4.5 2.5 3.7
-10 0 8.2 7.4 1.4 3.4
-10 10 10.2 9.8 1.6 3.3
-10 ∞ 10.9 10.6 2.1 3.2

0 -10 5.6 2.7 5.0 4.3
0 0 3.8 2.0 4.0 3.7
0 10 5.0 3.6 4.2 3.4
0 ∞ 6.4 5.4 4.3 3.3

10 -10 6.1 2.5 5.3 4.4
10 0 3.1 -0.0 5.2 4.3
10 10 1.0 -1.1 5.6 3.8
10 ∞ 1.4 0.1 6.1 3.2
∞ -10 6.3 2.6 5.1 4.5
∞ 0 4.1 0.1 5.2 4.6
∞ 10 0.7 -2.5 6.4 4.5

Table 2. Improvement in SINR obtained with probabilist estimates of speech (PrS) and noise (PrN) covariance, and with a-
priori known free-field HRTF speech (FfS) and isotropic noise (IsoN) models, respectively in all possible combinations. Results
shown for the anechoic (left) and reverberant office (right) environment.

to +90◦ and the interferer from −75◦ to +75◦ 30◦ same step
size. Four realizations of all possible combinations of target
and interferer positions, SIR and SNR were generated result-
ing in 6832 signals in the anechoic environment and 3472 in
the office room.

3.2. Results

In Tab. 2 the signal enhancement performance measured in
terms of SINR improvement of the four approaches under test
is summarized. For both environments, anechoic and office,
average results over all source position combinations, the four
realizations of each and both reference channels are shown
dependent on the input SIR and SNR. In the anechoic environ-
ment (left table) the combination of the a-priori known steer-
ing vector and the estimated noise covariance matrix is most
successful in all conditions, yielding SINR enhancement up to
26.3 dB. In the office room, where model steering vectors do
not provide perfect information, using probabilistic estimates
for both parameters (PrS+PrN) yields the best results for con-
ditions with low to moderate SIR followed by the FfS+PrN
combination. The latter, however, does not achieve much sig-
nal enhancement for SIRs above 0 dB and is even detrimental
in some cases. For these SIR conditions the combination of
estimated steering vector and noise model (PrS+IsoN) outper-
forms the other approaches.

4. SUMMARY AND DISCUSSION

In this contribution, we presented an approach to the estima-
tion of steering vector and noise covariance matrix for MVDR
beamforming. Based on spatial source presence probabil-
ity maps, obtained with a machine learning-based localiza-
tion method, target source activity was measured and steering
vectors were estimated in the STFT domain with the result-
ing probabilistic weights. From target source probability, the
inversely related noise probability was derived and used to
estimate noise statistics. Incorporating these estimates into
the spatial filters of an MVDR beamformer, signal enhance-
ment performance was compared to an entirely HRTF-model-
based approach and to two partially model-based approaches,
showing that spatial probability delivers suitable information
for robust spatial filter estimation. However, the probabilistic
estimation-based approach generalized well to a reverberant
environment and was shown to be appropriate for real-world
scenarios where a-priori knowledge is not available. The pro-
posed scheme for noise covariance estimation may account
for mixtures of a diffuse noise field and localized interfering
speech without the need for additional parameter estimation.
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