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ABSTRACT

In bioacoustics, automatic animal voice detection and recog-
nition from audio recordings is an emerging topic for ani-
mal preservation. Our research focuses on bird bioacoustics,
where the goal is to segment bird syllables from the record-
ing and predict the bird species for the syllables. Traditional
methods for this task addresses the segmentation and species
prediction separately, leading to propagated errors. This work
presents a new approach that performs simultaneous segmen-
tation and classification of bird species using a Convolutional
Neural Network (CNN) with encoder-decoder architecture.
Experimental results on bird recordings show significant im-
provement compared to recent state-of-the-art methods for
both segmentation and species classification.

Index Terms— Convolutional Neural Network, encoder-
decoder architecture, bioacoustic species classification

1. INTRODUCTION

Machine learning for bioacoustic is an emerging field of re-
search. The recent depletion in animal species has mandated
the need to preserve ecosystem biodiversity. An effective tool
of tracking animals and understanding biodiversity is via sen-
sors such as microphones, which leads to data in audio signal
form. In this paper, we focus on the problem of detecting and
recognizing bird species from in-situ recordings of bird songs
obtained from their natural habitats.

Fig. 1 shows the typical stages of a bioacoustic species
recognition system. Given an audio recording, it is first pro-
cessed to create a spectrogram as shown in Fig. 1(a) (en-
hanced to increase readability), which represents the inten-
sity of sound at different frequencies as a function of time.
The spectrogram then goes through segmentation to extract
bird syllables, as in Fig. 1(b), where each syllable is shown
as a red segment representing a single distinct utterance by
a bird [1]. Finally, the syllables are analyzed to identify the
species of the vocalizing birds, as shown in Fig. 1(c).

Detecting and recognizing bird syllables from natural in-
situ recordings is challenging for several reasons. First, there
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(a) Spectrogram

(b) Bird syllable segmentation

(c) Bird species recognition

Fig. 1. Stages of a bioacoustic species recognition system.

are often multiple birds singing simultaneously in the record-
ing, leading to bird syllables overlapping in time and poten-
tially in frequency. Second, complex environmental noise
such as rain or car sound often overlap with bird syllables and
occlude the pattern, making the recognition task more chal-
lenging.

As suggested by Fig. 1, traditional approaches for bird
species recognition decouples the segmentation and classi-
fication stages. In segmentation, the goal is to separate the
foreground bird syllable from the background, as in [2]. In
classification, we focus on the extracted foreground segments
and identify their bird species based on the characteristics of
the segments, as in [3]. For example, in Fig. 1(c), the bird
syllables in the solid boxes are Pacific-Slope Flycatcher and
the bird syllable in the dashed box is Swainson’s Thrush.

Decoupling the segmentation and classification steps has
a critical limitation that the classification performance will
heavily depend on the segmentation results. Intuitively, the
two tasks are strongly interrelated and can benefit one an-
other mutually. For example, when comparing two differ-
ent segmentations, the one that leads to higher classification
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confidence will likely be a better segmentation. In this pa-
per, we propose to simultaneously segment and classify the
bird syllables. We build on a deep learning framework that
has been successfully used in many computer vision tasks.
Specifically, our approach uses a Convolutional Neural Net-
work (CNN) with encoder-decoder architecture [4], which
was originally designed for semantic segmentation of images.
We evaluate the method on real recordings collected from a
forest and the results show significant improvement compared
to current state-of-the-art methods.

2. RELATED WORKS

Some of the early methods proposed for bird syllable segmen-
tation in [5, 6, 7] are mainly unsupervised. The boundary of
each bird syllable is determined by analyzing signal informa-
tion such as frequency, energy and amplitude.

There has also been several efforts in supervised learn-
ing of segmentation models based on annotated spectrograms.
Some methods [8, 9, 10], assume annotations come in the
form of time-frequency boxes that contain bird vocalizations.
In this work, we are interested in pixel level segmentation,
which provides more detailed information for downstream
analysis of the bird syllables. In [2], a random forest classi-
fier is trained from spectrograms that are manually annotated
at the pixel-level to generate a probability for each pixel of
the spectrogram, which indicates the likelihood of it belong-
ing to a foreground bird syllable. The probability map is then
Gaussian smoothed and a global threshold is applied to pro-
duce a binary mask for bird syllable segments. The main lim-
itation of this method was the use of a single global threshold
for segmentation, because different spectrograms may require
multiple different thresholds for the bird syllable segments to
be extracted precisely.

More recently, the Supervised Hierarchical Segmentation
(SHS) method in [11] was proposed to overcome this limita-
tion. SHS applies multiple thresholds to the probability map
to generate a hierarchy of candidate segments for each spec-
trogram. The candidate segments are then evaluated using a
learned quality predictor and finally a selection criterion is
optimized to identify a set of non-overlapping segments from
the hierarchy.

Once the bird syllable segments are extracted from the
spectrograms, Multi-instance Multi-label Learning (MIML)
has been proposed as an effective bird species classification
framework because it naturally models the phenomenon of
multiple birds singing in the same recording [12]. The cur-
rent state-of-the-art for MIML species classification is the
Multi-instance Multi-label Learning (MLR) model presented
in [13]. MLR learns a model from spectrograms that are
labeled with the species present to predict the species of indi-
vidual bird syllable segment. The recording level prediction
can be then obtained by taking the union of the segment level
predictions.

A deep autoencoder neural network [14] was proposed
to generate a binary mask of the bird syllables in the spec-
trogram. In [15] and [16] segmentation of bird syllables is
achieved by using unsupervised methods such as template
matching and energy-based algorithms, then segments are
classified using CNN.

All of the efforts mentioned above perform bird sylla-
ble segmentation and bird species classification individually,
this decoupling leads to propagated errors. But in our ap-
proach segmentation and classification of bird syllables are
performed simultaneously using the encoder-decoder CNN
[4].

3. PROBLEM FORMULATION

We consider a supervised learning approach. The core of our
approach is to learn a function that given an input spectro-
gram, annotates each pixel of the spectrogram as either be-
longing to a particular bird species or background noise. Be-
low we describe the set up for supervised learning of the an-
notation function.

Given a set of training spectrograms in the form of
{X,Y } pairs where X represents the training spectrogram,
and Y is the corresponding ground truth pixel-wise annota-
tion. That is, each pixel of X has a corresponding pixel in Y
annotated with a label ∈ {0, ..., n+ 1}, where 0 means back-
ground, and 1, . . . , n are the species labels and n + 1 is used
to signal the learner to ignore this pixel because its label is
unknown/uncertain. The goal is then to learn a function that
given a new spectrogram as an input, accurately annotates
each pixel of the spectrogram with a label in {0,...,n}.

4. THE DEEP LEARNING METHOD

In this work, we apply the convolution neural network pro-
posed in [4]. The input to the network is a spectrogram, and
the output is an image of the same size with pixels labeled as
either background or one of the n species.

Fig. 2. Convolutional encoder-decoder network in [4] imple-
mented for bird species classification.

Fig. 2 shows the architecture of the network, which has a
two-part encoder-decoder structure. Each encoder in the en-
coder network (the left half) performs convolution with a filter
bank to obtain rich feature hierarchies from the input spectro-
gram. We then batch normalize them and apply element-wise
ReLU (max(0, x)). Then, 2 × 2 maxpooling with a stride 2
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(non-overlapping window) is applied. The encoder architec-
ture has 5 levels with different number of convolutional layers
at each level, the input image is downsampled by a factor of
2 after each layer to provide a more global context for each
pixel to identify complex syllable patterns. Due to downsam-
pling of the input image, the boundary details are lost. To
preserve them, for every max-pooling layer, the max inten-
sity pixel locations computed by max-pooling are saved and
provided to the decoder network. The decoder architecture
also has 5 levels, which are structured similar to the encoder
network. The decoder network maps the downsampled fea-
tures from the encoder to input size features using the saved
pixel locations from the encoder, which enables the network
to perform simultaneous segmentation and classification. The
output of the decoder network is a multi-channel feature map
that is given to a multi-class soft-max layer to compute class
probabilities for each pixel independently. For more detailed
description of the network architecture please refer to [4].

The training of the network is achieved by minimizing the
cross-entropy loss [17] computed by

L(f) = −
∑
i

∑
c

yic ∗ ln(fic)

where i indexes over all pixels, and c goes over all class la-
bels. yic is a binary indicator that takes value 1 if pixel i has
label c, and fic is the soft-max probability of class c for pixel
i. The filters in the encoder-decoder architecture are trained
using backpropagation to minimize the cross-entropy loss.

While testing the soft-max layer predicts a label in
{0, ..., n} for each pixel. All non-zero pixels are considered
as foreground and the connected components are extracted
as syllables and a single species label is obtained for each
syllable using majority voting. Finally, a recording level pre-
diction can be achieved by taking the union of all species
present in the spectrogram.

5. EXPERIMENTAL RESULTS

We evaluate our approach on two real world bird acoustics
datasets, the HJA [13] and MLSP [18] datasets for both seg-
mentation and classification of the bird syllables.

5.1. Data description

The MLSP dataset has a total 645 recordings of 19 different
bird species. All 645 recordings are labeled at the recording
level, i.e., with a list of bird species present in the recording.
Of these 645 recordings, 250 recordings are annotated pixel-
wise by bird experts with their species. This is achieved by
manually marking out the syllables and labeling each syllable
with its species. Regions that are uncertain or contain over-
lapping syllables of different species are marked as the “un-
known” class. The HJA dataset contains 550 recordings of 14

different bird species that are a subset of the bird species in
MLSP. The HJA recordings have only recording-level labels.

5.2. Segmentation

While our method is designed to simultaneously segment and
classify the bird species, it can be easily applied to perform
segmentation only by restricting the pixel labels to foreground
and background. In the first set of experiments, we compare
the segmentation performance achieved by our deep learn-
ing method with previous methods on bird song segmentation
[11], which uses the same training information as our method.

We use the same experimental set up as used in [11] and
train on 50 spectrograms annotated at pixel level with fore-
ground/background labels and evaluated the segmentation
performance on the remaining 200 MLSP spectrograms.

5.2.1. Experimental examples

We visualize some of our segmentation results in Fig. 3. In
Fig. 3(b), there are many instances where bird syllable is over-
lapped with rain, but the CNN network was able to success-
fully identify the bird syllables.

(a)

(b)

Fig. 3. Segmentation results (best viewed in color). In (a)
and (b) the first image is the enhanced input spectrogram (for
better visualization), second is the ground truth labeled by
human experts and third is the result from our approach (red
label represents bird syllable and blue label represents rain).

5.2.2. Quantitative evaluation

We measure the segmentation accuracy by the number of cor-
rectly predicted pixels as background and foreground over the
total number of pixels. We compare our method with the Su-
pervised Hierarchical Segmentation (SHS) method [11] and
Neal’s method [2] on the MLSP dataset. The results are pre-
sented in Table 1. Note that by increasing the threshold in
the probability map, the False Positive Rate (FPR) of Neal’s
method decreases, since all background pixels are predicted
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Algorithm TPR FPR
SegNet 0.988 0.02
SHS 0.78 0.03
Neal-0.2 0.89 0.05
Neal-0.3 0.83 0.04
Neal-0.5 0.76 0.02
Neal-0.5 0.69 0.02
Neal-0.6 0.62 0.01

Table 1. Performance comparison of different segmentation
methods on the MLSP dataset, in terms of True positive rate
(TPR) and False positive rate (FPR).

as background due to high threshold. Our method achieves
the significantly higher True Positive Rate (TPR) while main-
taining a low false positive rate, suggesting far superior seg-
mentation results. Additionally, note that our method does not
require any Gaussian smoothing as a post processing step as
in SHS [11] and Neal’s method [2].

5.3. Species Classification

Our method is the first to perform simultaneous bird syllable
segmentation and classification at the pixel level. We were
thus unable to compare to any prior method for pixel-level
species prediction. Instead, we compare the recording-level
prediction accuracy with prior state-of-the-art. Toward this,
we use the 250 pixelwise annotated spectrograms from MLSP
for training and test the learned model on 550 spectrograms
from the HJA dataset such that we can compare our results
with previously reported state-of-the-art on the same dataset.
As testing in done on the HJA dataset, during training we con-
sider only the 14 bird classes present in the HJA dataset the
additional 5 bird species in the MLSP dataset are labeled as
unknown.

5.3.1. Experimental examples

We visualize some of our predictions in Fig. 4, where unique
color codes are used to represent bird syllables of different
species. Our approach successfully identifies the unique bird
syllable patterns in Fig. 4(a) and (b). Also Fig. 4(a) shows that
our method successfully eliminates noise such as rain marked
as blue in the ground truth annotation of the spectrogram.

5.3.2. Quantitative results

We compare the performance of our method with the previ-
ous state-of-the-art result on the HJA dataset achieved by the
MLR method [13]. The results are shown in Table 2, using
hamming loss proposed in [19] as the evaluation metric. The
hamming loss computes the number of object-label pair mis-
classified i.e, a proper label is missed or a wrong label is pre-
dicted. When the performance is ideal, the hamming loss is
zero. Thus smaller the value of hamming loss, better is the
performance.

The results show that our method achieves significantly
lower hamming loss on the HJA dataset. It is important to

(a)

(b)

Fig. 4. Classification results (best viewed in color). In (a)
and (b) the first image is the enhanced input spectrogram (for
better visualization), second is the ground truth labeled by
human experts and third is the result from our approach.

Algorithm hamming loss
SegNet 9.24
MLR 11.1

Table 2. Classification performance comparison.

note that MLR is trained with spectrograms labeled at the
recording level, thus is at a disadvantage in this comparison.
However, because MLR decouples the segmentation step and
species classification step, it is challenging for it to consider
additional segment-level training information due to signif-
icant misalignment between human annotated segments and
the automatically extracted segments. This presents a major
limitation for such decoupled methods. Our method, in con-
trast, does not suffer from this issue and can take advantage
of the fine grained annotation to achieve better segmentation
and classification performance.

6. CONCLUSION

We present a novel deep learning based method for simulta-
neous bird syllable segmentation and species prediction from
noisy in-situ recordings of bird songs. Our method applies
a popular encoder-decoder deep network structure that has
been successfully applied to computer vision tasks. Our re-
sults show that this method achieves improved performance
for both syllable segmentation and species classification in
comparison with the current state-of-the-art methods. Future
work includes developing recurrent neural network (RNN)
model which take into account the temporal relation between
bird syllables.
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