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ABSTRACT

We present in this work an approach for audio scene classification.
Firstly, given the label set of the scenes, a label tree is automatically
constructed where the labels are grouped into meta-classes. This cat-
egory taxonomy is then used in the feature extraction step in which
an audio scene instance is transformed into a label tree embedding
image. Elements of the image indicate the likelihoods that the scene
instances belong to different meta-classes. A class of simple 1-X (i.e.
1-max, 1-mean, and 1-mix) pooling convolutional neural networks,
which are tailored for the task at hand, are finally learned on top of
the image features for scene recognition. Experimental results on the
DCASE 2013 and DCASE 2016 datasets demonstrate the efficiency
of the proposed method.

Index Terms— audio scene classification, convolutional neural
network, label tree embedding, pooling

1. INTRODUCTION

Audio scene classification (ASC) is an important but challenging
task of computational auditory scene analysis [1, 2]. The scenes usu-
ally exhibit a complex composition of sounds, causing difficulties
in obtaining good representations for them. In general, foreground
sound events [3, 4, 5], background noise [6], and their combination
[7] can be used as a footprint to represent a scene [3, 4, 5].

Many features have been proposed for the task. They can be
roughly categorized in two groups: low-level and high-level features.
The former includes Mel frequency cepstral coefficients (MFCCs)
[8, 2] and Gammatone filterbank coefficients [9], Histogram of Ori-
ented Gradients (HOG) [10, 7], and Gabor dictionary [11] to men-
tion a few. The latter is usually built on top of low-level features via
classification or clustering schemes, such as bag-of-features (BOF)
models [12], restricted Boltzmann machines (RBM) [13], and non-
negative matrix factorization (NMF) [14]. More recently, scene rep-
resentation via its similarity to speech patterns has been reported to
give good generalization [15]. After the feature extraction step, the
classification is finally accomplished by some back-end classifiers,
such as Hidden Markov Models (HMMs) [16], GMMs [17, 18], Sup-
port Vector Machines (SVMs) [8, 10], and Deep Neural Networks
(DNNs) [19].

The work in [15] demonstrated that learned hierarchical rep-
resentations that take into account the structure of scene data can
be highly discriminative, as state-of-the-art performance can be ob-
tained even with simple linear classifiers. More specifically, a class
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taxonomy is constructed by learning to group similar categories into
meta-classes on a tree structure. An explicit embedding is then de-
rived to map each audio segment into the semantic space that un-
derlies the class hierarchy. However, the average pooling to form a
global feature vector for a scene instance [15] results in loss of de-
tails about the scene, such as foreground events. To avoid this issue,
in this work we skip the average pooling and represent a scene as a
2-dimensional LTE image. Afterward, we train different 1-X pool-
ing convolutional neural networks (CNN), including 1-max, 1-mean,
and 1-mix pooling CNNs, on top of these images for classification.
The rational behind this is that with the high-level LTE image fea-
tures, we have quantized and reduced the complex mixture of sounds
into meta-class likelihoods of the LTE images on which even a very
simple CNN is able to yield good performance. The proposed CNNs
are particularly designed for pattern learning and matching from the
LTE images for classification. While the 1-max CNN is expected to
uncover patterns corresponding to foreground events of the scenes,
the 1-mean one tends to capture the average background patterns,
and the 1-mix one is to combine both types of information into the
same model.

2. LTE IMAGE FEATURES FOR AUDIO SCENES

2.1. The LTE image features

Given an audio scene dataset of C classes, for example the DCASE
2013 dataset [2], we firstly decompose the audio signals into mul-
tiple segments of length 500 ms with an overlap of 250 ms. This
results in T = 118 segments for each 30-second snippet. Each
segment is characterized by a low-level feature vector of size M ,
such as MFCCs, and labeled by the label of the original scene
signal. Using this set of data, we then learn to construct a label
tree which recursively groups similar categories into (C − 1) × 2
meta-classes two of which are associated with the left and right
child nodes of one out of (C − 1) split nodes (cf. [15] for further
details). Suppose that we have indexed the split nodes of the label
tree as i where 1 ≤ i ≤ C − 1. Afterwards, an audio segment
x ∈ RM is embedded into the space of meta-class likelihoods
via the explicit mapping Ψ : RM → R(C−1)×2. Formally,
Ψ(x) =

(
ψL

1 (x), ψR
1 (x), . . . , ψL

C−1(x), ψR
C−1(x)

)
where ψL

i (x)

and ψR
i (x) denote the likelihoods that x belongs to two meta-classes

on the left and right child nodes of the split node index i, respec-
tively. The likelihoods ψL

i (x) and ψR
i (x) can be obtained as the

classification probability outputs of some binary classification mod-
els that are trained to discriminate the meta-classes on the left and
right child nodes of the split node i. As in [15], we trained random
forest classifiers [20] with 200 trees for this purpose.
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Using the label tree embedding learning algorithm , we derived
the following LTE representations with different low-level feature
sets: (1) Gammatone cepstral coefficients [9, 21], (2) MFCCs [17],
and (3) and log-frequency filter bank coefficients [22, 23]. We also
study how the presence/absence of background noise affects the
LTE representations. We reprocess the input signals using minimum
statistics noise estimation and subtraction [24] whenever we need
to remove background noise. As a result, six LTE images are ob-
tained for a single scene instance, namely LTE0-Gam, LTE0-MFCC,
LTE0-Log, LTE1-Gam, LTE1-MFCC, and LTE1-Log where “0” and
“1” denote presence/absence of the background noise.

LTE0-Gam and LTE1-Gam. We use M = 64 Gammatone
cepstral coefficients [21] in the frequency range of 20 Hz to half
of the sampling frequency for each 500 ms audio segment. To ac-
complish this, an audio segment is further decomposed into 50 ms
frames with 50% overlap. 60 Gammatone cepstral coefficients are
then extracted for each small frame. In turn, the feature vector for
the entire segment is computed by averaging the feature vectors of
its constituent frames. Via the label tree embedding, each 30-second
scene instance is eventually transformed into an F × T LTE image
where F = (C − 1)× 2.

LTE0-MFCC and LTE1-MFCC. Similarly, for these LTE fea-
tures, we employed M = 60 MFCC features in replacement for
Gammatone cepstral coefficients in LTE0-Gam and LTE1-Gam.
MFCCs were calculated for each 50 ms frame with Hamming win-
dow and 40 mel bands. Beside the first 20 coefficients (including
0th order coefficients), 20 delta coefficients, and 20 acceleration
coefficients were also calculated using a window length of nine
frames.

LTE0-Log and LTE1-Log. We utilized the set of features in
our previous works [23, 22] as low-level features in replacement for
Gammatone cepstral coefficients in the LTE0-Gam and LTE1-Gam.
They include 20 log-frequency filter bank coefficients, their first and
second derivatives, zero-crossing rate, short-time energy, four sub-
band energies, spectral centroid, and spectral bandwidth. The overall
feature dimension is M = 65.

2.2. Potential issues of classification with global LTE features

In [15], average pooling over time is applied to the LTE images to
produce global LTE feature vectors which are presented to SVM
classifiers for classification. This recognition scheme achieves state-
of-the-art performance on different audio scene datasets (c.f. [15]),
thanks to the discriminative powers of LTE features. However, we
argue that this classification scheme is actually not optimal.

Excluding the background noise, an acoustic scene usually in-
volves various kinds of foreground sounds which are sparsely and ir-
regularly distributed. As a result, it can be interpreted as foreground
events on the bed of background noise. Although foreground events
[13, 3, 4, 5] and background noise [6] have been used as a footprint
to represent a scene, they should be considered separately [7]. Un-
fortunately, with the average pooling, we tend to blend the sparse
foreground events into the dominating background noise. To over-
come this issue, we alternatively propose to classify directly on the
LTE images using 1-X pooling CNNs in Section 3 where 1-X pool-
ing stands for 1-max, 1-mean, and 1-mix pooling operators.

3. CLASSIFICATION WITH 1-X POOLING CNNS ON
MULTI-CHANNEL LTE IMAGES

In contrast to typical deep CNN architectures, the proposed network
architecture is relatively simple. It consists of one convolutional
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Fig. 1. Illustration of 1-max pooling CNN architecture on a P -
channel LTE image (P = 6 in this work). The network consists
of two filter sets with two different widths w = {3, 5} at the convo-
lutional layer. There are two individual filters on each filter set.

layer, one 1-X pooling layer, and one softmax layer. An illustration
for 1-max pooling CNN is given in Fig. 1. However, this architec-
ture is expected to fit well to the task at hand since it tends to ex-
tract useful patterns from the LTE images for classification. While
the first network is expected to uncover patterns corresponding to
foreground events of the scenes, the second one tends to capture the
average background, and the third one is to combine both types of
information into the same model.

3.1. Multi-channel LTE images as data augmentation

The inputs to the networks are the whole LTE images. Further-
more, our experiments reveal that different low-level features (e.g.
Gammatone cepstral coefficients, MFCCs, and log-frequency filter
banks) used to derive LTE images are good for different scene cate-
gories. In addition, background noise is also shown useful for some
event classes. Therefore, it is reasonable to let the CNNs look at
multiple LTE images at the same time to learn cross-channel fea-
tures. To accomplish this, we stack the individual LTE images to
produce the multi-channel LTE image of size P × F × T for the
scene instance when P = 6 is the number of single LTE images.
This can also be considered as a data augmentation method to regu-
larize the networks.

3.2. Convolutional layer

We aim to use the convolutional layer to extract discriminative fea-
tures within the whole signals that are useful for the classification
task at hand. Suppose that an LTE image presented to the network is
given in the form of a 3-dimensional matrix S ∈ RP×F×T . We then
perform convolution on it via 3-dimensional linear filters. For sim-
plicity, we only consider convolution in time direction, i.e. fix two
dimensions of a filter to be equal to P and F and vary the remaining
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dimension to cover different number of adjacent audio segments.
Let us denote a filter by the weight matrix w ∈ RP×F×w

with the width of w audio segments. Therefore, the filter contains
P × F × w parameters that need to be learned. We further denote
the temporal adjacent spectral slices (e.g. audio segments) from i to
j by S[i : j]. The convolution operation ∗ between S and w results
in the output vector O = (o1, . . . , oT−w+1) where:

oi = (S ∗w)i =
∑
k,l,m

(S[i : i+ w − 1]�w)k,l,m. (1)

Here, � denotes the element-wise multiplication. We then ap-
ply an activation function h to each oi to induce the feature map
A = (a1, . . . , aT−w+1) for this filter:

ai = h(oi + b), (2)

where b ∈ R is a bias term. Among the common activation func-
tions, we chose Rectified Linear Units (ReLU) due to their compu-
tational efficiency [25]:

h(x) = max(0, x). (3)

To allow the network to extract complementary features and en-
rich the representation, we learn Q different filters simultaneously.
Moreover, foreground events in a scene may have different dura-
tions. We learn filters with different sizes simultaneously in order
to capture them more efficiently. More specifically, we learn R dif-
ferent sets of Q filters, each of which has different width w to form
Q×R filters in total.

3.3. 1-X pooling layer

The feature maps produced by the convolution layer are forwarded
to the pooling layer. We propose three different pooling operations
that are especially designed for scene recognition. In addition, these
pooling strategies offer a unique advantage. That is, although the
dimensionality of the feature maps varies depending on the length of
audio events and the width of the filters, the pooled feature vectors
have the same size [26, 27, 28]. Therefore, the signals can be of
any arbitrary size instead of being fixed to 30-second long as the
common setting for the task.

1-max pooling. This pooling operation on a feature map aims
to reduce a feature set to a single most dominant feature [29]. Cou-
pled with the 1-max pooling function, each filter in the convolutional
layer is optimized to detect a specific event that is allowed to occur
at any time in a scene signal. Pooling onQ × R feature maps results
in Q × R features that will be joined to form a feature vector that
is then presented to the final softmax layer.

1-mean pooling. A feature map is averaged to result in a single
mean feature. Due to averaging, this feature is supposed to capture
the average background of the signal. Q × R features are produced
from Q × R feature maps.

1-mix pooling. This operation performs both 1-max and 1-mean
pooling at the same time with the hope to capture both foreground
events and the average background. The final feature vector contains
2 × Q × R features, one half consists of 1-max features and the
other half of 1-mean features.

3.4. Softmax layer
The fixed-size feature vector after the pooling layer is subsequently
presented to the standard softmax layer to compute the predicted
probability over the class labels. The network is trained by mini-
mizing the cross-entropy error. This is equivalent to minimizing the

KL-divergence between the prediction distribution ŷ and the target
distribution y. With the binary one-hot coding scheme and the net-
work parameter Θ, the error for N training samples is given by

E(Θ) = − 1

N

N∑
i=1

yi log(ŷi(Θ)) +
λ

2
||Θ||2. (4)

The hyper-parameter λ governs the trade-off between the error term
and the `2-norm regularization term. Furthermore, we also employ
dropout [30] at this layer by randomly setting values in the weight
vector to zero with a predefined probability. The optimization is
performed using the Adam gradient descent algorithm [31].

4. EXPERIMENTS
4.1. Datasets

We employed the following two datasets in our experiments:
DCASE2013 dataset. This dataset was used in the DCASE2013

challenge [3, 2]. It consists of ten scene categories. The audio sig-
nals were recorded in different locations in London at different time
points with a sampling frequency of 44.1 kHz. The dataset has two
subsets: public and private subsets, each contains 100 30-second-
long scene instances with ten examples for each class. The former
was released during the challenge for participants to tune their clas-
sification systems. The latter was used to evaluate the submissions
and also made public after the challenge. The submitted systems
were evaluated with five-fold stratified cross validation on the pri-
vate subset [2]. We follow the cross validation setting here, however,
to alleviate possible overfitting due to the small size of this dataset,
at each time, we combined the public set and the training folds of
the private set to make the training data.

DCASE2016 dataset. The setup is based on the development
setting as described in Task 1 of the DCASE 2016 challenge [32, 17].
The signals were recorded with a sampling frequency of 44.1 kHz.
The development data consists of 30-second audio signals of 15
scene classes divided into 4-fold cross-validation. The average clas-
sification accuracy over all folds is reported. Especially, to handle
the errors in some of the recordings (as informed by the challenge),
we simply removed erroneous segments from the signals. This re-
sults in an LTE image with T < 118 segments which was then cir-
cularly padded to make 118 segments.

4.2. Parameters

The proposed 1-X pooling CNNs involve different hyperparameters
which are specified in Table 1. The filter widthw was set to {3, 5, 7}
segments which are equivalent to 1, 1.5, and 2 seconds duration. For
the DCASE2013 dataset, the networks were trained for 200 epochs
with a minibatch size of 30. In particular, due to the relatively small
number of examples of this dataset, we repeated the network training
five times and report the average performance for this dataset. For
the DCASE2016 dataset, the networks were trained for 500 epochs
with a minibatch size of 50. In fact, the training history shows that
the training converged very fast, and the networks do not experience
overfitting after convergence.

4.3. Baselines

We employed the classification scheme with the global LTE features
in [15] for performance comparison. The baselines (i.e. LTE0-Gam,
LTE0-MFCC, LTE0-Log, LTE1-Gam, LTE1-MFCC, and LTE1-
Log) were trained using one-vs-one χ2 kernel SVMs. In addition,

138



Table 1. Hyper-parameters of the proposed CNN networks.

Hyper-parameter Value

Filter width w {3, 5, 7}
Number of filter for each size 500
Learning rate for the Adam optimizer 0.0001
Dropout rate 0.5
Regularization parameter λ 0.001

we also used a fusion system, denoted by LTE-Fusion, that com-
bines different global LTE feature vectors as an additional baseline.
LTE-Fusion is expected to take advantage of representation power
from different perspectives (i.e. different low-level features). The
fusion is accomplished using the extended Gaussian-χ2 kernel [33]
given by

K(xi,xj) = exp
(
−
∑
k

1

D̄k
D
(
Ψk(xi),Ψ

k(xj)
))

(5)

where D
(
Ψk(xi),Ψ

k(xj)
)

is the χ2 distance between the global
LTE feature vectors of the embedded scene instances Ψk(xi) and
Ψk(xj) with respect to the k-th channel where

k ∈ {LTE0-Gam,LTE0-MFCC,LTE0-Log,
LTE1-Gam,LTE1-MFCC,LTE1-Log}. (6)

D̄k is the mean χ2 distance of the embedded scene instances in train-
ing data for the k-th channel.

For the sake of comparison, we also collate performance of our
systems to other reported results on the datasets. It should be noticed
that although there exist other works on the DCASE2013 dataset af-
ter the DCASE2013 challenge, we only mention those with perfor-
mance equivalent or higher than that of the best submission in the
challenge. For the case of DCASE2016, the baseline system pro-
vided by the challenge [17] is used for this purpose.

4.4. Experimental results

The overall classification performance obtained by different systems
is shown in Tables 2 and 3 for the DCASE2013 and DCASE2016
datasets, respectively. As can be seen for individual LTE features,
the three employed low-level feature sets perform differently. While
LTE0-Log and LTE1-Log outrun others on the DCASE2013 dataset,
a comparable performance obtained by different LTE features was
seen on the DCASE2016 one. These results imply that, for the
audio scene classification task, it is important to adopt appropri-
ate low-level features for high-level feature learning and to adapt
them for different datasets. As expected, integrating them in the
fusion system LTE-Fusion leads to significant gains in classifica-
tion accuracy. Absolute gains of up to 2.0% and 3.5% against the
best constituent (LTE1-Log) are obtained for the DCASE2013 and
DCASE2016 datasets, respectively. It is also worth mentioning that
the LTE-Fusion already outperforms the best previously reported re-
sults on both datasets (i.e. AMS+LDA [34] for DCASE2013 and
DCASE2016 baseline for DCASE2016 [17]) by 4.4% and 4.5%, re-
spectively.

It can be clearly seen that the classification accuracy is signifi-
cantly improved with the proposed 1-X pooling CNNs. Compared
to the best baseline (i.e. LTE-Fusion), classification with the CNNs
leads to absolute accuracy improvements of 2.8%, 2.4%, and 3.4%

Table 2. Classification accuracy (%) on the DCASE2013 dataset.
Systems Accuracy
1-Max CNN-LTE 88.8
1-Mean CNN-LTE 88.4
1-Mix CNN-LTE 89.4
LTE0-Gam 73.0
LTE0-MFCC 75.0
LTE0-Log 83.0
LTE1-Gam 80.0
LTE1-MFCC 80.0
LTE1-Log 84.0
LTE-Fusion 86.0
RNH [2] 76.0
MV [2] 77.0
Human [3] 75.0
HOG [10] 76.0
AMS+LDA [34] 85.0

Table 3. Classification accuracy (%) on the DCASE2016 dataset.
Systems Accuracy
1-Max CNN-LTE 80.3
1-Mean CNN-LTE 79.8
1-Mix CNN-LTE 81.2
LTE0-Gam 72.6
LTE0-MFCC 69.9
LTE0-Log 72.8
LTE1-Gam 70.7
LTE1-MFCC 72.2
LTE1-Log 73.5
LTE-Fusion 77.0
DCASE2016 baseline [17] 72.5

for the DCASE2013 dataset with 1-max, 1-mean, and 1-mix pooling
schemes, respectively. The gains for the DCASE2016 reach 3.3%,
2.8%, and 4.2%, respectively. Between the pooling schemes, 1-max
appears to be more efficient that 1-mean. These results comply with
our knowledge on the acoustic scenes that both foreground sounds
and background noise can serve as footprints, but the former is more
representationally capable. Combining them with the 1-mix pool-
ing scheme in the 1-mix CNN is expected to lead to an even better
classification system.

5. CONCLUSIONS

In conclusion, we present an efficient approach to address the au-
dio scene classification problem. Our systems rely on label tree
embedding image features which are automatically learned to en-
code the structure of the data. Different 1-X (i.e. 1-max, 1-mean,
and 1-mix) pooling CNNs are then proposed to optimize on top of
these high-level features for classification. The proposed CNN ar-
chitecture is simple but tailored for the task. Our experimental re-
sults on the DCASE2013 and DCASE2016 datasets show that while
classification with individual LTE features themselves and their fu-
sion obtains very good performance, the accuracies are significantly
improved with 1-X pooling CNNs trained on multi-channel stacked
LTE images. Absolute improvement of 3.4% and 4.2% against the
fusion baseline are achievable with the 1-mix pooling CNNs on the
DCASE2013 and DCASE2016 datasets.
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