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ABSTRACT

We propose a method of estimating a sound field with two
spherical microphone arrays (SMAs). This method estimates
plane-wave expansion coefficients of the sound field by using
sparse representation modeling in the frequency domain. The
dictionary matrix we propose for this modeling achieves the
integration of the measurements of two SMAs in a straightfor-
ward manner. The effectiveness of the proposed method was
evaluated in simulations with computer-generated and mea-
sured impulse responses.

Index Terms— Spherical microphone array, plane wave
expansion, frequency domain, sparse representation modeling

1. INTRODUCTION

A spherical microphone array (SMA) and so-called binaural
synthesis are combined for spatial sound reproduction of an
actual 3D auditory scene according to a listener’s head move-
ments [1] [2] [3]. A sound field is captured using a SMA
and the plane-wave expansion coefficients of the sound field
is obtained. From these coefficients and head-related trans-
fer functions (HRTFs), binaural signals are synthesized and
reproduced for the listener’s left and right ear through a head-
phone.

SMAs have been studied in recent years because of their
ability to analyze sound fields in three dimensions [4] [5]. A
rigid SMA, in which microphones are mounted on a rigid baf-
fle, is often preferred to an open SMA because it improves the
numerical stability of many processing algorithms [6][7] and
its scattering effects are calculable [5] [8] [9]. Later Wu et al.
[10] showed that sparse representation modeling [11] [12] is
effective for estimating the plane-wave expansion of a sound
field when the number of possible plane-wave incident angles
is much larger than that of microphones on an SMA.

In binaural synthesis, the coefficients of the plane-wave
expansion are manipulated according to the listener’s head
movements and filtered using HRTFs. By superimposing the
filtered coefficients, binaural signals are obtained. Li and Du-
raiswami proposed a method of manipulating the coefficients
according to the rotation of the listener’s head [2]. Later
Schultz and Spors proposed a method of manipulating the co-
efficients according to the translatory movements of the lis-
tener’s head [3].

For synthesizing binaural signals corresponding to large
translatory movements, it is desirable that a larger sound field
be captured using an SMA. However, the effective area of the
sound field captured using a single SMA is actually limited.

We propose a method that involves two rigid SMAs to
estimate a larger area of a sound field. This method esti-
mates plane-wave expansion coefficients of the sound field
by using sparse representation modeling. In this modeling,
the frequency-domain dictionary matrix integrates the mea-
surements by two SMAs in a straightforward manner. The
proposed method differs from [13] and[14] in the following
points. First, rigid SMAs are used in the proposed method,
instead of open SMAs. Second, the proposed method works
in the frequency domain, not in the spherical harmonic do-
main. In Section 2, we review conventional methods for an
single SMA. In Section 3 we discuss our proposed method
that involves two SMAs. In Section 4 we discuss the evalua-
tion of the proposed method.

2. SINGLE SPHERICAL MICROPHONE ARRAY

Let us consider a unit-magnitude plane wave and an SMA of
radius ra at frequency ω as shown in Fig. 1, where the center
of the SMA is at the origin. The incident angle of the plane
wave is given as Ωs in a spherical coordinate. Ωs denotes a
pair of elevation θs and azimuth φs. The sound pressure by
this plane wave is expressed at R = (x, y, z) in the Cartesian
coordinate as

p (ω,R) = eiks•R, (1)

ks = k
[

sin θs cosφs, sin θs sinφs, cos θs
]T
. (2)

The term k = ω/c is the wave number for frequency ω and
speed of sound c.

The sound pressure at (r,Ω) due to this unit-magnitude

(ra,Ωq)

O

Ωs = (θs,φs)

Fig. 1. Plane wave of incident angle Ωs and sphere.
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plane wave and the sphere is expressed as [5] [6][15],

p (ω, r,Ω) = 4π

∞∑
l=0

il
l∑

m=−l

bl(kr)Y
m∗
l (Ωs)Y

m
l (Ω)(3)

=

∞∑
l=0

il bl(kr) (2l + 1)Pl (cos ΘΩs,Ω) , (4)

where i =
√
−1 and Y m

l () is the spherical harmonic function
of order l and degreem. bl(kr) is the so-called mode strength
expressed as follows.

bl(kr) =

jl(kr) open sphere

jl(kr)− j
′
l (kra)

h
(1)′
l (kra)

h
(1)
l (kr) rigid sphere

(5)

Here jl() is the spherical Bessel function of order l. h(1)
l () is

the spherical Hankel function of the first kind and of order l.
j′l() and h(1)′

l () denote the their first derivatives. According
to the spherical harmonic addition theorem [16, (12.197)], (3)
can be rewritten as (4). The Pl() is the Legendre polynomial
of degree l. Θ(Ωs,Ω) is the angle between Ωs and Ω.

The sound pressure on the sphere of radius ra is expressed
in the spherical harmonic domain (SH domain) as

p̃l,m =

∫
Ω∈S2

p (ω, ra,Ω)Y m∗
l (Ω) dΩ, (6)

= 4πil bl(kra)Y m∗
l (Ωs). (7)

Since, in an actual situation, the sound field is measured by a
limited number of microphones on the SMA, (6) is approxi-
mated by a summation. The order of p̃l,m is truncated to L
that satisfies (L+ 1)2 ≤ Q, where Q is the number of micro-
phones. A measurement vector in the frequency domain

p(ω) =
[
p(ω, ra,Ω1) · · · p(ω, ra,ΩQ)

]T
(8)

is transformed to a vector of (L + 1)2 elements in the SH
domain

p̃(ω) =
[
p̃0,0 p̃1,−1 p̃1,0 p̃1,1 · · · p̃L,L

]T
. (9)

Let us consider obtaining plane-wave expansion coeffi-
cients from p̃(ω). This problem can be formulated with the
compressed sensing (CS) approach [10][11], where ND(�
Q) possible plane-wave incident angles Ω1 · · ·ΩND

are as-
sumed beforehand. This approach attempts to solve an under-
determined problem

p̃(ω) = D̃(ω)a(ω), (10)

where

D̃(ω) =
[
ũ(Ω1) · · · ũ(ΩND

)
]
, (11)

ũ(Ω) = 4π


i0 b0 (kra)Y 0∗

0 (Ω)
i1 b1 (kra)Y −1∗

1 (Ω)
...

iL bL (kra)Y L∗
L (Ω)

 . (12)

Here D̃(ω) is a dictionary matrix of size (L + 1)2 × ND.
a(ω) is aND×1 vector of plane-wave expansion coefficients,
where a few elements have non-zero values. This sparse a(ω)
is obtained solving an `1 optimization problem.

3. TWO SPHERICAL MICROPHONE ARRAYS

We propose a method of estimating a sound field by using
two SMAs (SMA A and SMA B), with which the coefficients
of the plane-wave expansion of the sound field are estimated
using a dictionary in the frequency domain. The proposed
method is based on the assumption that the scattering from
one SMA to another SMA can be negligible. The testing of
this assumption is discussed in the next section. For this test-
ing, an approximate model of this scattering was also derived.

3.1. Proposed method

For constructing a dictionary matrix for two SMAs, we have
to know how the same plane wave is represented on both
SMAs. Since considering this representation in the SH do-
main is not straightforward, we propose to obtain the repre-
sentation in the frequency domain.

(ra,Ωq) (ra,Ωq)

O RB
A B

Fig. 2. Plane wave of incident angle Ωs and two spheres.

Let us assume a plane wave of incident angle Ωs =
(θs, φs) and SMA A at the origin, as shown in Fig. 2, where
the positions of the microphones on SMA A are given by
rq = (ra,Ωq) (1 ≤ q ≤ Q). Then, the output of its qth
microphone to the incident plane wave of Ωs is expressed as

pq(ω,Ωs) = 4π

∞∑
l=0

il
l∑

m=−l

bl(kra)(2l + 1)Pl (cos Θ(Ωs,Ωq)) .

(13)

The dictionary matrix in the frequency domain

D(ω) =

 p1(ω,Ω1) · · · p1(ω,ΩND
)

...
...

pQ(ω,Ω1) · · · pQ(ω,ΩND
)

 (14)

relates the output of SMA A

pA(ω) =
[
pA(ω, 1) · · · pA(ω,Q)

]T
(15)

and plane-wave expansion coefficients a(ω) as pA(ω) =
D(ω)a(ω).
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Next, consider the outputs of SMA B whose center is
given as RB in the Cartesian coordinate. According to (1),
the sound pressure at R due to the incident plane wave of Ωs

is given as eiks•R. Hence, the sound pressure p(ω) is 1 at the
origin and p(ω) = eiks•RB at RB. This means that consider-
ing the scattered sound field at RB is equivalent to consider-
ing the scattered sound field at the origin with the phase shift
of eiks•RB . Hence, the output of the qth microphone on SMA
B is expressed as

p (ω,Ωs,Ωq) = eiks•RBpq(Ωs), (16)

where ks is given by (2). Therefore, the dictionary matrix for
SMA B is expressed as

D(ω,RB) =
[
u1 · · · uND

]
, (17)

un = eikn•RB

 p1(Ωn)
...

pQ(Ωn)

 (1 ≤ n ≤ ND). (18)

The relation between the plane-wave expansion coefficients
a(ω) and the outputs of SMAs A and B is expressed as

p(ω) =

[
pA(ω)
pB(ω)

]
=

[
D(ω)

D(ω,RB)

]
a(ω). (19)

Thus, considering the dictionary matrix in the frequency
domain instead of the SH domain, has two advantages.
First, D(ω,RB) is obtained easily by using the phase shift
eiks•RB . Second, the order of spherical harmonics of pq(Ωn)
in (13) can be chosen freely for constructing the dictionary
matrix. This order is not limited by the number of micro-
phones on the SMAs.

With this dictionary matrix, a(ω) is obtained by solving
the `1-constraint problem

a(ω) = arg min

∣∣∣∣[ D(ω)
D(ω,RB)

]
a(ω)−

[
pA(ω)
pB(ω)

]∣∣∣∣2
subject to |a(ω)|1 ≤ γ. (20)

The reason for using this formulation [17] is that the norm of
a(ω) can be directly controlled. We use γ as the upper limit
in the above constraint equation.

When an rigid SMA with radius ra is set virtually at R,
the output from the SMA is synthesized as

p(ω) = D(ω,R)a(ω). (21)

3.2. Scattering between SMAs

We analyzed the scattering from rigid SMA A to rigid SMA
B by using a point sound source instead of a plane wave. The
reason is that actual sound fields are considered generated by
a set of point sound sources.

Consider a unit amplitude point source at rs = (rs,Ωs)
and the wave from this source to SMA A at the origin. The

sound field scattered by rigid SMA A of radius ra is expressed
[15, (8.22)] as

p(k, r, rs) =
ik

4π

∞∑
l=0

j′l(kra)

h
′(1)
l (kra)

h
(1)
l (kr)

×h(1)
l (krs) (2l + 1) Pl (cos Θr,rs) . (22)

According to [15, (6.68)]

h
(1)
l (kr) ≈ (−i)l+1 e

ikr

kr
, (23)

(22) can be approximated as

p(k, r, rs) ≈
eikr

4πr

4π

k
T (k, ra, r, rs), (24)

T (k, ra, r, rs) =

{
ik

4π

∞∑
l=0

j′l(kra)

h
′(1)
l (kra)

(−i)l+1

×h(1)
l (krs)(2l + 1)Pl (cos Θr,rs)

}
. (25)

Let r be the center of SMA B. Then (24) means that the
sound field due to the scattering from SMA A to SMA B is
approximated by the sound field generated by a point sound
source at A with intensity of 4π T (k, ra, r, rs)/k. Hence, the
sound pressure on the qth microphone on SMA B due to this
scattering wave from SMA A is expressed as

psc(k, r̃q, r̃A) =
ik

4π

∞∑
l=0

bl(kr̃q)h
(1)
l (kr̃A)(2l + 1)Pl

(
cos Θr̃q ,̃rA

)
×4π

k
T (k, ra, r, rs), (26)

where r̃A is the positions of the center of SMA A in the coor-
dinate whose origin is at the center of SMA B, and r̃q is that
of the qth microphone on SMA B.
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Fig. 3. Difference of sound field captured by SMA A with and
without rigid sphere corresponding to SMA B: (a) simulated
data (b) measured data.
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4. EVALUATION

First, the assumption that the interaction between two SMAs
is negligible was confirmed in an anechoic room. We set an
SMA of radius 0.042 m and 32 microphones at (x, y, z) =(0
m, 0 m, 1 m) and a loudspeaker at (0 m, 2 m, 1 m). We
also set a rigid sphere with the same radius at (x1 m, 0 m, 1
m). Let ho(ω) and h1(ω) be the vectors of the transfer func-
tions between the loudspeaker and all microphones without
and with the rigid sphere. By changing x1 to 0.2 and 0.4 m,
we investigated the interaction between two rigid spheres.

Fig. 3 shows the |h1(ω)−ho(ω)|2/|ho(ω)|2 of (a) simu-
lated data and (b) measured data. For the simulated data, ho

was obtained using SMIR generator [8] [9]. h1 was obtained
by adding the scattered sound field due to the rigid sphere
expressed by (26). For the measured data, we used Eigen-
Mike as the SMA. It can be seen that the relative difference
was below -20 dB. Hence, the assumption can be considered
effective in this setting.

O

A B

x

rn

φn

Fig. 4. Arrangement of sound source and rigid SMAs.
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Fig. 5. RMSE of sound field estimation with computer-
generated impulse responses by using single SMA (dotted)
and two SMAs (solid): (a) 500 Hz, (b) 1000 Hz, (c) 1500
kHz, and (d) 2000 Hz.

Second, we compared the estimation by a single SMA and
that by two SMAs. We focused below 2 kHz because phase
information in this range is used as a cue to the direction of the
sound in human auditory system[18]. The impulse responses
were generated as in the first evaluation. The room size was
11 × 10 × 3 m (length×width×height) and its reverberation
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Fig. 6. RMSE of sound field estimation with measured im-
pulse responses by using single SMA (dotted) and two SMAs
(solid): (a) 500 Hz, (b) 1000 Hz, (c) 1500 kHz, and (d) 2000
Hz.

time was 0.2 s. Signal-to-noise ratio was set to 35 dB. Fig.
4 shows the setting. The positions of sound sources were
(r, φ)=(3.5 m, 1/6π) and (4 m, 2/3π). The same SMAs as the
first evaluation were used. The distance between SMA A and
B was set to 0.4 m. We investigated the difference between the
output of a single rigid SMA p(x, ω) and the estimate from
the proposed method p̂(x, ω) using root-mean square error
(RMSE) |p(x, ω) − p̂(x, ω)|2 along the x−axis. The dic-
tionary matrix was obtained from 642 pre-determined direc-
tions. The CVX [19][20] was used for solving `1 optimization
(20). γ was set to 1.8max(abs([pA(ω)TpB(ω)T ]T )). Fig. 5
shows the results for f =500, 1000, 1500, and 2000 Hz. At
all frequencies, the estimation by using two SMAs was better
than that by using a single SMA.

Next, we evaluated the proposed method with measured
impulse responses by using the EigenMike. The room size
was 9 × 8 × 3 m. Its reverberation time was 0.3 s. The
positions of sound sources were (r, φ) = (2.5 m, 1/4π) and
(2.1 m, 2/3π). γ was set as in the previous evaluation. Fig.
6 shows the results for f =500, 1000, 1500, 2000 Hz. At all
frequencies, the areas of RMSE below 0 dB were larger for
the proposed method.

5. CONCLUSION

We proposed a method of estimating a sound field with two
rigid SMAs. We show that constructing a dictionary matrix
in the frequency domain achieves a straightforward integra-
tion of the measurements of two SMAs. Simulations with
computer-generated and measured impulse responses showed
that the estimation by using two SMAs was better than that
by using a single SMA.
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