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ABSTRACT

This paper provides a regularization-free analytical approach to 2.5D
interior and exterior sound field control using a circular double-layer
array of fixed-directivity loudspeakers not only to provide a desired
sound field inside the array but also to reduce the sound energy out-
side of it in the horizontal plane. The proposed method analyti-
cally derives the driving functions of the inner and outer circular ar-
rays based on 2.5D spherical harmonic expansion to simultaneously
control both sound fields inside and outside the array by a mode-
matching framework. The results of computer simulations show that
the proposed method is certainly effective compared with the con-
ventional least squares approach that requires regularization schemes
in terms of synthesis accuracy inside the listening zone over a wide-
band frequency range and the acoustic contrast between the quiet
zone and the synthesis center at low frequencies.

Index Terms— Interior and exterior sound field control, circu-
lar loudspeaker array, fixed-directivity loudspeaker, 2.5D sound field
synthesis, Ambisonics

1. INTRODUCTION

In typical sound field synthesis approaches, such as wave field syn-
thesis [1,2] and higher-order Ambisonics (HOA) [3–5], only the de-
sired synthesis region is considered [6], and undesired sound pres-
sures are radiated to other regions. In applying sound field synthesis
in actual environments, it is crucial not only to provide a sound field
at a desired region but also to reduce the sound energy in other re-
gions.

Multizone sound field synthesis approaches have been investi-
gated to simultaneously control multiple sound fields in multiple
regions [7–14]. In these approaches, however, undesired regions
remain.

To synthesize a desired sound field inside a loudspeaker array
and completely reduce the undesired sound energy outside of it, 2D
interior and exterior sound field control approaches with circular ar-
rays of first-order [15] and higher-order [16] line sources have been
proposed. An analytical driving function of a circular first-order line
source has been derived [15], based on the Kirchhoff-Helmholtz in-
tegral [17] and the Fourier series expansion [17].

For actual implementations, sound field synthesis systems are
frequently simplified for synthesis in the horizontal plane. The sound
sources are then arranged on a line or a circle. In actual implementa-
tions, 3D monopole sources (instead of 2D line sources) are usually
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employed for the sound sources. Such approaches are called 2.5D
sound field synthesis [5, 18–21].

Since implementing line sources, especially first- and higher-
order line sources, is difficult in actual 3D environments, a 2.5D inte-
rior and exterior sound field control approach in the horizontal plane
using a circular double-layer array of fixed-directivity loudspeak-
ers [22] has been proposed [23] and investigated [24–26]. Experi-
mental validation with an actually implemented array has also been
presented [27]. This method is based on the least squares (LS) solu-
tion, which is numerically calculated using control points and loud-
speaker positions. However, the LS-based approach is quite unstable
because the acoustic inverse problem is very ill-conditioned [17]. To
stably calculate the well-conditioned inversion and driving signals,
regularization schemes are required, such as the truncated singular
value decomposition (SVD) method or Tikhonov regularization [28].
In the LS method, repeated calculations of the inversion and driv-
ing signals are needed to select the optimal regularization parame-
ters [29].

To avoid the regularization problem in the conventional LS
method, this paper provides a regularization-free analytical ap-
proach to 2.5D interior and exterior sound field control using a
circular double-layer array of fixed-directivity loudspeakers. The
interior and exterior sound fields produced by the circular double-
layer array of fixed-directivity loudspeakers are represented as 2.5D
spherical harmonic expansion and the driving functions of the in-
ner and outer arrays are analytically derived by extending 2.5D
HOA [5, 18–21].

2. FOURIER SERIES AND SPHERICAL HARMONIC
EXPANSIONS OF SOUND FIELDS

In this section, we briefly introduce the Fourier series expansion of a
2D sound field and the spherical harmonic expansion of a 3D sound
field produced by a fixed-directivity loudspeaker.

2.1. Fourier series expansion of 2D sound fields

Spherical coordinates relative to Cartesian coordinates are defined in
Fig. 1.

The interior expansion of a 2D sound field (θ = π/2) in a region
that is homogeneous and free of sources is given as

S(r, φ) =

∞∑
m=−∞

ÅmJm(kr)ejmφ, (1)

where Åm and Jm are the interior sound field expansion coefficients
and the m-th order Bessel function, k is the wavenumber [17], and
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Fig. 1. Definition of spherical coordinates relative to Cartesian co-
ordinates.

j =
√
−1. The corresponding expansion for regions exterior to any

sound sources is given as

S(r, φ) =

∞∑
m=−∞

B̊mHm(kr)ejmφ, (2)

where B̊m and Hm are the exterior sound field expansion coeffi-
cients and the m-th order Hankel function of the first kind [17].

2.2. Spherical harmonic expansion of 3D sound field produced
by a fixed-directivity loudspeaker

As in previous research [22], the sound pressure at r, produced by a
fixed-directivity loudspeaker located at r0, is modeled as

S(r, r0) =
ejk|r−r0|

4π|r − r0|

{
a− (1− a)

[
1 +

j

k|r − r0|

]
cosα

}
,

(3)

where a is the first-order weighting parameter and α is the angle
from the loudspeaker axis.

When the main lobe of S(r, r0) points toward the origin, the
spherical harmonic expansions of (3) for r < r0 and r > r0 are
given as

S(r, r0) = jk

∞∑
n=0

n∑
m=−n

jn(kr) {ahn(kr0)

−j(1− a)h′n(kr0)
}
Y mn (θ, φ)Y mn (θ0, φ0)∗, r < r0, (4)

S(r, r0) = jk

∞∑
n=0

n∑
m=−n

hn(kr) {ajn(kr0)

−j(1− a)j′n(kr0)
}
Y mn (θ, φ)Y mn (θ0, φ0)∗, r > r0, (5)

where jn and j′n are the n-th order spherical Bessel function and its
derivative, hn and h′n are the n-th order spherical Hankel function of
the first kind and its derivative, and Y mn is the m-th order spherical
harmonics of the n-th degree [17].

3. ANALYTICAL DRIVING FUNCTION OF A CIRCULAR
DOUBLE-LAYER SOUND SOURCE

In the proposed approach, we first consider a continuous circular
double-layer sound source distribution with radii r1 and r2 (r1 < r2)
centered at the origin on the x-y plane instead of a circular double-
layer loudspeaker array (Fig. 2). A sound field synthesized by a
continuous circular double-layer sound source is given as

S(r, θ, φ) =

∫ 2π

0

D1(φ0)T1(r, r1) +D2(φ0)T2(r, r2)dφ0, (6)

Quiet  zone

Listening 
zone

rq

�rq

rb
r1r2

r
o

ri

Fig. 2. Arrangements of circular double-layer array of fixed-
directivity loudspeakers and listening and quiet zones.

where D1(φ0) and D2(φ0) are the driving functions of the inner
and outer circular sources and T1(r, r1) and T2(r, r2) are the trans-
fer functions from sound source positions r1 = [r1, π/2, φ0] and
r2 = [r2, π/2, φ0] to receiver position r. Similar to a previous
work [23], these transfer functions are modeled as a weighted com-
bination of a monopole and a dipole with the main lobes of T1(r, r1)
and T2(r, r2) pointing toward and away from the center, respec-
tively. Under the free-field assumption, T1(r, r1) and T2(r, r2) are
described as

T1(r, r1) =
ejk|r−r1|

4π|r − r1|

{
a− (1− a)

[
1 +

j

k|r − r1|

]
cosα

}
,

(7)

T2(r, r2) =
ejk|r−r2|

4π|r − r2|

{
a+ (1− a)

[
1 +

j

k|r − r2|

]
cosα

}
.

(8)

As in [5], when the spatial Fourier series expansion is applied to (6)
with θ = π/2, the circular convolution theorem holds and (6) is
represented as

S̊m(r) = 2π
{
D̊m,1T̊m,1(r, r1) + D̊m,2T̊m,2(r, r2)

}
. (9)

Similar to 2.5D HOA [5, 18, 20, 21], the 2.5D spherical harmonic
expansions of transfer functions T1(r, r1) and T2(r, r2) are derived
from (4) and (5) and given as

T̊m,1(r<, r1) = jk

∞∑
n=|m|

jn(kr)hn,1(a, r1)Qmn P
|m|
n (0)2, (10)

T̊m,2(r<, r2) = jk

∞∑
n=|m|

jn(kr)hn,2(a, r2)Qmn P
|m|
n (0)2, (11)

T̊m,1(r>, r1) = jk

∞∑
n=|m|

hn(kr)jn,1(a, r1)Qmn P
|m|
n (0)2, (12)

T̊m,2(r>, r2) = jk

∞∑
n=|m|

hn(kr)jn,2(a, r2)Qmn P
|m|
n (0)2, (13)
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where P |m|n is the |m|-th order associated Legendre polynomial of
the n-th degree [30] and

hn,1(a, r1) = ahn(kr1)− j(1− a)h′n(kr1), (14)

hn,2(a, r2) = ahn(kr2) + j(1− a)h′n(kr2), (15)

jn,1(a, r1) = ajn(kr1)− j(1− a)j′n(kr1), (16)

jn,2(a, r2) = ajn(kr2) + j(1− a)j′n(kr2), (17)

Qmn =
2n+ 1

4π

(n− |m|)!
(n+ |m|)! . (18)

Even though r is completely canceled in the driving functions
in the 2D and 3D cases, the driving function of 2.5D HOA depends
on r and accurate sound pressures are synthesized at the reference
circle [5, 18–21].

In the proposed approach, to simultaneously control the sound
fields both inside and outside the circular source, the reference dis-
tances for the listening and quiet zones inside and outside of it are
set to ri (0 < ri < r1) and ro (ro > r2), respectively. From (1)
and (2), the sound pressures inside and outside the circular source
are then set to

S̊m(ri) = ÅmJm(kri), (19)

S̊m(ro) = B̊mHm(kro) = 0. (20)

(19) and (20) are substituted into (9) and represented in matrix form:

2π

[
T̊m,1(ri<, r1) T̊m,2(ri<, r2)

T̊m,1(ro>, r1) T̊m,2(ro>, r2)

] [
D̊m,1
D̊m,2

]
=

[
ÅmJm(kri)

0

]
. (21)

Then driving functions D̊m,1 and D̊m,2 are directly derived as

D̊m,1 =
T̊m,2(ro>, r2)ÅmJm(kri)

2πT̊m(r1, r2, ri, ro)
, (22)

D̊m,2 = − T̊m,1(ro>, r1)ÅmJm(kri)

2πT̊m(r1, r2, ri, ro)
, (23)

where

T̊m(r1, r2, ri, ro)

= T̊m,1(ri<, r1)T̊m,2(ro>, r2)− T̊m,2(ri<, r2)T̊m,1(ro>, r1).
(24)

The driving function of 2.5D HOA with reference distance
rref = 0 is derived [18] and can synthesize a more accurate sound
field than with rref > 0. To extend the driving functions of the pro-
posed method into those with ri = 0, L’Hôpital’s rule [31] and the
following approximations for small arguments, i.e., kr → 0 [17],

jn(kr) ≈ (kr)n

(2n+ 1)!!
, and Jm(kr) ≈ sgn(m)|m|(kr)|m|

2|m||m|!
,

are also applied in (22) and (23). The driving functions with ri = 0
are then obtained as

D̊m,1

∣∣∣
ri=0

=
T̊m,2(ro>, r2)ÅmCm

2πjkQm|m|P
|m|
|m| (0)2Um(a, r1, r2, ro)

, (25)

D̊m,2

∣∣∣
ri=0

= − T̊m,1(ro>, r1)ÅmCm

2πjkQm|m|P
|m|
|m| (0)2Um(a, r1, r2, ro)

, (26)

where

Cm =
sgn(m)|m|(2|m|+ 1)!!

2|m||m|!
, (27)

Um(a, r1, r2, ro) =

h|m|,1(a, r1)T̊m,2(ro>, r2)− h|m|,2(a, r2)T̊m,1(ro>, r1),
(28)

and sgn in (27) is the sign function.
A continuous circular double-layer source is finally discretized

into a circular double-layer loudspeaker array. When the number of
loudspeakers of each layer is L, order m of the spatial Fourier series
in (25) and (26) can be calculated up to M = b(L − 1)/2c, where
b·c is the floor function. The driving signal of each loudspeaker at
φl in the temporal frequency domain is obtained as

D(φl) =

M∑
m=−M

D̊m

∣∣∣
ri=0

ejmφl , l = 1, 2, · · ·L. (29)

4. COMPUTER SIMULATIONS

Computer simulations compared the proposed approach with the
conventional LS method [23]. In all the simulations, a three-
dimensional free field was assumed. The speed of sound c was
343.36 m/s.

As in a previous work [23], the radii of the inner and outer circu-
lar arrays of the fixed-directivity loudspeakers, those of the listening
and quiet zones were r1 = 0.9 m, r2 = 1.0 m, rb = 0.2 m, and
rq = 2.0 m, respectively. The quiet zone width was ∆rq = 1.0 m.
The control distances in the proposed method were set to ri = 0 m
and ro = 2.5 m. The arrangement of these radii is depicted in Fig. 2.
In the LS method, the listening and quiet zones were sampled at
discrete points with 0.05 m spacing between adjacent points. The
weighting factor to determine the balance between the potential en-
ergy in the quiet zone by the acoustic contrast approach [32] and
the mean square error in the listening zone by the pressure matching
approach [33] was κ = 0.5, and truncated SVD regularization [28]
and the discrepancy principle with the same parameter in [23] were
used to calculate the stable driving signals in the LS method. The
total number of loudspeakers was 64 and L = 32. The maximum
order in (29) was M = 15. n in (12), and (13) was truncated to 100.
The desired sound field was a plane wave with an amplitude of unity
propagating from direction Φ = π/4 and Åm = jme−jmΦ.

To estimate the synthesized sound field, the synthesis error at po-
sition r and the acoustic contrast between position r and the center
of the array (r = 0) were defined as

E(r) = 10 log10

|Sdes(r)− Ssyn(r)|2

|Sdes(r)|2 , (30)

C(r) = 10 log10

|Ssyn(r)|2

|Ssyn(r = 0)|2 , (31)

where Sdes(r) and Ssyn(r) were the desired and synthesized sound
pressures at position r, respectively.

Figure 3 shows the results of the synthesized sound field, the
previously defined synthesis error (30), and the previously defined
acoustic contrast (31) for both the conventional LS and proposed
methods using 64 cardioid directivity loudspeakers (a = 0.5) at a
temporal frequency of f = 400 Hz. These results indicate that the
proposed approach effectively controlled both the interior and exte-
rior sound fields as well as the conventional LS method.
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Fig. 3. Results: (a) synthesized sound field, (b) synthesis error de-
fined in (30), and (c) acoustic contrast defined in (31) for conven-
tional LS and proposed methods using 64 cardioid directivity loud-
speakers (a = 0.5) at temporal frequency f = 400 Hz. Black circles
in (a) and (b) are 64 loudspeakers.

In addition, the averaged synthesis error inside the listening zone
(r ≤ rb) and the acoustic contrast between the quiet zone with width
∆rq and the center of the array up to f = 2 kHz are plotted in Figs. 4
and 5, respectively.

As shown in Fig. 4, the results of the averaged synthesis er-
ror suggest that the proposed approach clearly outperformed the LS
method in terms of synthesis accuracy inside the listening zone at
all of the temporal frequencies. This is because it is based on mode
matching just like HOA and truncated order M = 15 is sufficient to
control the sound pressures inside the listening zone up to f = 2 kHz
whose corresponding order is krb ≈ 7.3 < M .

The results of the averaged acoustic contrast shown in Fig. 5
indicate that the proposed approach efficiently controlled the quiet
zone with an averaged acoustic contrast below−40 dB up to around
fNyq,2 ≈ 819 Hz, which is the spatial Nyquist frequency of the
outer array that corresponds to kr2 = M . This limitation is the
same as the conventional 2D analytical approach with first-order line
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Fig. 4. Results of averaged synthesis error inside listening zone (r ≤
rb) for LS and proposed methods with cardioid directivity (a = 0.5)
and omni-directional (a = 1) loudspeakers.
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Fig. 5. Results of averaged acoustic contrast between quiet zone and
center of array for LS and proposed methods with cardioid directiv-
ity (a = 0.5) and omni-directional (a = 1) loudspeakers.

sources [15]. In the proposed method, the averaged acoustic contrast
performance around fNyq,2 was slightly delegated since only the
sound pressures on the circle with radius ro are accuratly controlled
and the wavelength corresponding to around fNyq,2 was shorter than
quiet zone width ∆rq.

As previously examined [23], the results in Figs. 4 and 5 with
omni-directional loudspeakers (a = 1) are also almost the same as
those with cardioid directivity loudspeakers below about 1.2 kHz.

Consequently, the proposed approach based on an analytical so-
lution without regularization is certainly effective compared with
the conventional LS method that requires regularization schemes in
terms of synthesis accuracy inside the listening zone over a wide-
band frequency range and the acoustic contrast between the quiet
zone and the synthesis center at low frequencies.

5. CONCLUSIONS

This paper proposed a regularization-free analytical method to con-
trol 2.5D interior and exterior sound fields using a circular double-
layer array of fixed-directivity loudspeakers. The driving functions
of the inner and outer circular arrays were analytically derived based
on the 2.5D spherical harmonic expansion of the sound field pro-
duced by fixed-directivity loudspeakers. The results of computer
simulations showed that the proposed method is certainly effective
compared with the conventional LS method with regularization in
terms of synthesis accuracy inside the listening zone over a wide-
band frequency range and the acoustic contrast between the quiet
zone and the synthesis center at low frequencies.
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