A NEURAL NETWORK ALTERNATIVE TO NON-NEGATIVE AUDIO MODELS

Paris Smaragdis®

Shrikant Venkataramani®

¥University of Illinois at Urbana-Champaign
> Adobe Research

ABSTRACT

We present a neural network that can act as an equivalent to a Non-
Negative Matrix Factorization (NMF), and further show how it can
be used to perform supervised source separation. Due to the exten-
sibility of this approach we show how we can achieve better source
separation performance as compared to NMF-based methods, and
propose a variety of derivative architectures that can be used for fur-
ther improvements.

1. INTRODUCTION

During the last decade, we have seen an increasing use of Non-
Negative Models for audio source separation [1, 2]. In this paper
we describe an alternative computational approach for such models
that makes use of neural networks. The reason for this approach is
to take advantage of the multiple conveniences of neural network
models that allow us to design non-negative model variants that are
overcomplete, multi-layered, arbitrarily non-linear, have temporal
structure, can address non-linear mixtures, etc. Additionally, this
approach allows us to effortlessly implement new architectures due
to the wealth of automatic differentiation tools available for this pur-
pose. As we will show in this paper, using a neural network approach
also allows us to obtain significantly improved results.

In this paper we will address two of the main issues that need to
be resolved to implement a non-negative model using a neural net-
work; the calculation of a non-negative basis representation from an
audio signal, and the calculation of a non-negative latent state from
an audio signal. Using these two steps we can easily replicate most
of the existing literature in non-negative models. In the remainder of
this paper we will introduce a process for these two calculations and
then show how they compare with a traditional non-negative audio
model in separation tasks.

2. NON-NEGATIVE AUTOENCODERS

2.1. A non-negative autoencoder architecture

The well-known K -rank Non-Negative Matrix Factorization (NMF)
model as introduced in [3] is defined as:

X~W-H (D)

where X € R%XN is a non-negative input matrix to approximate,
and W € RQIOXK ,H €]RfOXN are the two non-negative factors,
commonly referred to as bases and activations respectively. The set
RN s that of real, non-negative matrices of size M x N. This

Partial funding for this work was provided by the National Science Foun-
dation under award number 1453104

978-1-5090-4117-6/17/$31.00 ©2017 IEEE

factorization has been the core element for many source separation
methods in the last few years [1, 2].

Let us now reinterpret the NMF model as a linear autoencoder.
The obvious formulation is:

H=W!.X
X=W-H

18! layer:
2)

2" Jayer:

in which we enforce the constraint that W, H > 0. The non-
negative matrices W and H would correspond to their namesakes
in the NMF model, whereas the matrix W* would be some form of
a pseudoinverse of W that produces a non-negative H. The output
X is the model’s approximation to the input X. In autoencoder ter-
minology, the first layer weights W¥ are referred to as the encoder
(which produces a code representing the input), and the upper layer
weights W are referred to as the decoder (which uses the code to re-
construct the input). Although this representation would be function-
ally equivalent to NMF, it would not exhibit any specific advantage
and is more complicated and burdensome to implement. Instead we
use a slightly different formulation that, as we will show later on, has
more interpretative power and is more in line with common neural
network designs. Consider the Non-Negative Autoencoder (NAE)
model:

1t layer: H = (Wi ~X)

y i g 3)

2 jayer: X = g(W - H)
where g : RM*N y RYXN je. an element-wise function that
produces non-negative outputs. Well-known examples of such func-
tions in the neural network literature include the rectified linear unit:
g(z) = max(z,0), the softplus: g(x) = log(1l + €%) or even the
absolute value function g(x) = |z|. By applying such an activation
function we ensure that our latent representation H and that the ap-
proximation X are both non-negative. There is no guarantee that the
matrices W# and W will be non-negative, but that is not a necessary
constraint as long as the output and latent state are.

There are of course many ways to estimate the two weight ma-
trices W* and W, but for the remainder of this paper we will use
the following approach. The entire input X will be used as a single
batch and the parameter updating will be estimated using the RProp
algorithm [4]. For the activation function we will use the softplus
function [5]. We will use the cost function from [3]:

D(X,X) =) (Xz',j [log(Xz-,j) - 10%(5(11,1)] - X+ Xu)
i
4)

where the subscripts ¢, j acts as indices on the matrix they are applied
on.

ICASSP 2017

Input Spectrogram

4000 D t E) t G Il i FF Il G Il
Z 2000
=
S 1000
= T
£ 50 ==
100
0.0 05 10 15 20 25 30 35
Time (sec)
NMF bases NAE Upper Layer Sparse NAE Upper Layer
4 AJ_/_,_,_,_A— PR s e s i s VA et i es—— B J \ J\
= A = AN A~ = /\ /\
% 3 % 3 A E 3 N I
Sl N A A g, W/ Mp N B L A AN A
S S, —- N 5, ~ N\ A
1 1

100 500 1000

Frequency (Hz)

2000 4000 100 500

NMF activations

(

Component

»(

Component
(

|

2 |

1000
Frequency (Hz)

NAE activations

o~
5 M

"
P J \\»\J’\#’*‘*«f»,fv\,,

M 1

2000 4000 100 500 1000

Frequency (Hz)

2000 4000

Sparse NAE activations

Component

0.0 0.5 1.0

Time (sec)

15

Time (sec)

20 25 3.0 35 15

Time (sec)

20

Fig. 1. A comparison between NMF and NAEs for component discovery in spectrograms. The input spectrogram is shown in top plot, and
consists of five notes, as labelled. The left plots show the coding discovered by NMF. The NMF bases and activations correctly identify the
spectral shape and activation of the four pitches. The middle plots show the results for an NAE, with the upper layer’s matrix rows shown
at the top plot and the first layer outputs shown at the bottom plot. Although they approximate the input well, they are not as perceptually
meaningful. At the right we see the results from a sparse NAE. Asking for a sparse first layer output results in an encoding that’s equivalent

to NMF.

2.2. Learning a non-negative model

In the context of audio processing, NMF is often used to decompose
the magnitude of time-frequency distributions (e.g. the input matrix
X is often a magnitude spectrogram). To illustrate the differences of
this model with NMF when using such inputs, consider the following
example from [6] shown in figure 1. This is a snippet of a piano per-
formance, with the note sequence {D, Eb, G, Fﬁ, G}, which is four
distinct pitches (each having a different spectrum), with the pitch G
repeated twice making this a five-note sequence. This structure can
be clearly seen in the spectrogram in figure 1.

As shown in [6], we can extract that information by modeling
the magnitude spectrogram using equation 1 with a rank of 4. We
set X as the input spectrogram, and upon convergence we obtain
W and H, which will respectively hold the model’s four bases and
their corresponding four activations. Upon visual examination we
see that the columns of W resemble the spectra of the four notes
in the input, whereas the rows of H activate that spectra at the right
points in time to construct the input. These are shown in the middle
and bottom left plots in figure 1.

We now turn to the problem of estimating a similar encoding
using a neural network. Using the model in equation 3 we obtain
the matrices W and H. These essentially represent an NMF model,
albeit with W potentially having negative values, and having the
non-negativity of the output being enforced by the nonlinearity g(-)
(which is set to softplus in this case). This model learns a good
representation, but it isn’t as intuitive as the NMF model. We see
that the spectral bases take on negative values which will result in
some cross-cancellation being used for the approximation, thereby

87

obfuscating the component-wise additive structure of the model.

One way to resolve the problem of basis cross-cancellations is
to use regularization. We see that in this case multiple bases are ac-
tivated simultaneously, forcing each unique spectrum in the input to
be represented by multiple bases at a time. This is a very redundant
coding of the input resulting in an unnecessarily busy activation pat-
tern. By adding a sparsity regularizer on H we can obtain a more
efficient coding of the input and minimize activation redundancy.
We do so by extending the cost function in equation 4 by:

L£=D(X,X)+ \[H|: 5)

We repeat the above experiment using this new cost function and
report the result in the right plots of figure 1. As is clearly evident,
this model learns a representation which is qualitatively equivalent
to NMF (in fact it is slightly more efficient due to the regularization).

2.3. Learning a latent representation given a model

Having learned a model for a sound, we now turn to the problem
of extracting the activations H for an input sound if the bases W
are already known. This is a crucial process for non-negative au-
dio models since it allows us to explain new signals given already
learned models. In the case of NMF this is a very straightforward
operation; the estimation is the same as learning the full model but
we keep the matrix W fixed. In the case of the NAE model this
operation isn’t as obvious. Ideally we would expect to pass a new
input through the first layer of a trained NAE and obtain an estimate
of H for that sound, but this is not a reliable estimator when using
mixtures of sounds. Fortunately the solution to this problem isn’t

complicated and is a reinterpretation of the neural network training
process.

Consider the model in equation 3. For the task at hand we will
be given an input spectrogram X and a learned model W and we
would have to estimate an H such that X ~ X. This essentially
becomes a single-layer non-linear network:

X =g(W- H) (6)
In usual neural network problems we would be given a target X with
corresponding inputs H and would be expected to learn the model
weights W. What we have to solve in this case is a complementary
problem, where we are given the targets and weights but we need
to estimate the inputs. This is of course simply the original prob-
lem with the dot product operands swapped, and we can easily solve
it using simple gradient backpropagation' (or any other variants of
neural network learning).

2.4. Extensions

Since we now make use of a neural network framework we can easily
implement extensions of this model. The most obvious case would
be the one of a multilayered (or deep) network, as opposed to the
shallow model presented above. In this case we implement the NAE
as:

Y, =X

Yi=9g(W;-Yi1),i=1,2,..,2L

H=Y. @)
X =Y

where we use 2L layers overall, and we ensure that the layer sizes
are symmetric about the middle, i.e. that if W; € R™*¥ then
Wari1-: € RNXM The output of the L’th layer H will be the
latent representation. This model effectively uses the first L layers as
an encoder to produce a latent representation, and then uses the upper
L layers as a decoder and produces an approximation of the output
X. Just as before, we minimize the previously used cost function
between the network’s output X and input X, and train using the
same methods as before. This kind of model will allow us to use
more complex representations of the input with a richer dictionary,
which would be impossible to simulate with NMF.

Additionally, we can use more exotic layer types, and implement
each layer using a recurrent neural network (RNN) and its variants
[7, 8] to make use of temporal context, or use convolutional layers
[9] to make use of time/frequency context, or any of the many fla-
vors of neural network layers that are available today. In this paper
we will limit our discussion to the two models explicitly described
above, but it is very easy to implement any other layer type for addi-
tional modeling power.

3. SUPERVISED SEPARATION

We now turn our attention to the problem of supervised separation
[10]. In this setting, NMF is often used to learn an a priori model
of the types of sounds, and then once presented with a new mixture
containing such sounds, the learned models are used to decompose
that mixture into the contribution of each source. We therefore have
two steps or processing, one being the training of the source models,

Iby transposition: X T = g((W -H)T) = g(HT - W) this becomes
the same as a generic training problem where we can estimate H ' by pre-
tending it is a weight matrix

88

and the other being the fitting of these models on a mixture sound.
We have addressed both of these problems in the previous sections,
for the source separation problem we need to add a couple more
details discussed below.

The first step for this source separation process is to learn mod-
els of the sounds we expect to encounter. We can simply do that
independently for each sound type using the methodology shown in
section 2.2. The only information that we need to retain would be
the decoders of the learned NAEs, which will be used to compose an
approximation of the input mixture.

Once the decoders are obtained, the next step is to use them
simultaneously to explain a mixture containing sounds relating to
them. To do that we will combine them using the following setup:

X1 = g(W;-Hy)

X2 = g(W2 - Ha)
X:Xl +X2

®)

where W are the already obtained decoders, one for each sound
class. We use each decoder to approximate an output X.; and then we
sum these outputs to produce an approximation of the input mixture
X. The only parameters we can adjust to achieve this approximation
are H;, the latent representations of the two models. Conceptually
this problem isn’t much different than the problem in section 2.3 and
is easy to solve using standard methods. One optional change we
can make at this point is to add one more regularizer to discourage
models being active simultaneously in a redundant way. We do so
by setting the cost function to:

L=D(X,X)+ A [[Hllx)
k

This regularizer usually results in a modest improvement, but is by
no means necessary.

In the case of a multilayer NAE (or any other layer type), the
above equations need to be extended to include the entire decoder of
the pretrained models. To explain a mixture we would only need to
estimate just the inputs to the first layer of these decoders, and then
sum their outputs.

4. EXPERIMENTS

We now present some experiments separating speech mixtures to
compare the NAE approach to a traditional NMF method. We com-
posed 32 0dB mixtures of two random TIMIT speakers [11], and for
each speaker’s 10 sentences we use 9 to train a speaker model and
1 to use in the mixture. For preprocessing we take the magnitude
spectrogram of the mixture using a 512pt DFT, applying a square-
root Hann window, and a hop size of 25%. The magnitude spectra of
the training data and the mixture are being used as inputs to an NMF
or NAE estimator. To reconstruct the extracted sources from X; we
use:

si(t) = STFT™! (X:

g J

OX6 ei“’> (10)
where X; is the estimated magnitude spectrogram of the ¢’th source,
and @ is a matrix containing the phase of the input mixture. The op-
erator © denotes element-wise multiplication, and STFT () is the
inverse spectrogram, which produces a waveform from a complex-
valued spectrogram. We run two experiments to measure the per-
formance of this approach. We measured the success of separation
using the median BSS_EVAL metrics [12] and STOI index [13].

NMF vs. shallow NAE - rank-20

20 1.00

Algorithm
[NMF

o 15 NAE | 0.75
= ==
wv p—
= 10 ' 050 2
[I
=
a

5 0.25

0 0.00

SAR stol
Metric
NMF vs. shallow NAE - rank-100
20 1.00
Algorithm
[0 NMF

1 7
o | oA E o7
= N
wv —_—
= 10 Ah, 050 2
2 w 7
= Ah —

5 ‘ 0.25

0 0.00

SDR SIR SAR Stol

Metric

NMF vs. multilayer NAE - rank-20 .

Algorithm
0 NMF

e NAE 07

0.50

STOI

SDR/SIR/SAR dB

0.25

0.00

SIR SAR STO!

Metric

NMF vs. multilayer NAE - rank-100

'

Metric

1.00

Algorithm
[0 NMF
[0 NAE

0.75

0.50

STOI

SDR/SIR/SAR dB

0.25

0.00

SAR STO!

Fig. 2. Comparison of source separation performance on speech/speech mixtures between NMF and NAEs. The left-facing (pink) distributions
are of NMF separation results, whereas the right-facing (blue) distributions are of NAE results. The thick solid line in each distribution shows
the median value over all experiments, and the dashed lines delimit the corresponding interquartile range. The top plots compare the results
between rank-20 NMF with a 20 unit NAE (left), and a rank-20 NMF with a four-layer NAE (L = 2) with 20 units in each layer (right). The
bottom plots show the same type of comparison for models with rank 100.

The first experiment compared the ability of the NAE model to
resolve mixtures when using various layer sizes. The results of are
shown in figure 3. We see that for a shallow NAE (equation 3)
performance peaks around 20 components (roughly the same behav-
ior as with NMF separators). For a multilayer NAE (equation 8§,
L = 2 and all layers being the same size), we see that performance
increases as we add more components, and peaks at 100.

We also compared a basic NMF separator with a shallow and
a multilayer NAE (L = 2) of the same size (figure 2). In general,
we see that the shallow NAE performs roughly equivalently to NMF
separators, albeit with worsening performance when using higher
rank decompositions (which is expected since as shown before, shal-
low NAE performance degrades at large ranks). For the multilayered
NAE, we see that it matches NMF performance with a rank of 20,
but performs significantly better for a rank of 100 (again this is ex-
pected from the results in figure 3). Note that for the large NAE the
interquartile range of the results is above the interquartile range of
NMEF, implying a consistently better performance.

5. CONCLUSIONS

In this paper we presented an alternative approach to applying non-
negative models for source separation. We show that this approach
results in significantly improved performance, and that it lends itself
to a wealth of model extensions that would be difficult to implement
using the traditional NMF methodology.

89

NAE performance

—o— SDR —A&— SIR —¥— SAR —m— ST0I

*ﬂ77—177f—1\
| SRR G S S S S

SDRI/SIR/SAR dB
STOl

30 40 50

Rank

60 70 80 90 100

Multilayer NAE performance

—e— SDR A— SIR —¥— SAR —m— ST0I

,,.,ffff-rlrlff'i—“;i—"”” ——a—a

[Sasstssssitiss

0 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Rank

SDRISIR/SAR dB
STOI

Fig. 3. Performance on speech/speech mixtures of shallow (top) and
multilayer (bottom) NAEs with varying number of components. For
speech/noise mixtures the results are generally 2 to 4 dB higher.

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

6. REFERENCES

Paris Smaragdis, Cedric Fevotte, Gautham J Mysore, Nasser
Mohammadiha, and Matthew Hoffman, “Static and dynamic
source separation using nonnegative factorizations: A unified
view,” IEEE Signal Processing Magazine, vol. 31, no. 3, pp.
66-75, 2014.

Tuomas Virtanen, Jort Florent Gemmeke, Bhiksha Raj, and
Paris Smaragdis, “Compositional models for audio process-
ing: Uncovering the structure of sound mixtures,” IEEE Signal
Processing Magazine, vol. 32, no. 2, pp. 125-144, 2015.

Daniel D Lee and H Sebastian Seung, “Algorithms for non-
negative matrix factorization,” in Advances in neural informa-
tion processing systems, 2001, pp. 556-562.

Martin Riedmiller and Heinrich Braun, “A direct adaptive
method for faster backpropagation learning: The rprop algo-
rithm,” in Neural Networks, 1993., IEEE International Con-
ference On. IEEE, 1993, pp. 586-591.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio, ‘“Deep
sparse rectifier neural networks.,” in Aistats, 2011, vol. 15, p.
275.

Paris Smaragdis and Judith C Brown, “Non-negative matrix
factorization for polyphonic music transcription,” in Applica-
tions of Signal Processing to Audio and Acoustics, 2003 IEEE
Workshop on. IEEE, 2003, pp. 177-180.

Felix A Gers and E Schmidhuber, “Lstm recurrent networks
learn simple context-free and context-sensitive languages,”
IEEE Transactions on Neural Networks, vol. 12, no. 6, pp.
1333-1340, 2001.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and
Yoshua Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555,2014.

Yann LeCun and Yoshua Bengio, “Convolutional networks for
images, speech, and time series,” The handbook of brain theory
and neural networks, vol. 3361, no. 10, pp. 1995, 1995.

Paris Smaragdis, Bhiksha Raj, and Madhusudana Shashanka,
“Supervised and semi-supervised separation of sounds from
single-channel mixtures,” in International Conference on Inde-
pendent Component Analysis and Signal Separation. Springer,
2007, pp. 414-421.

John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G
Fiscus, David S Pallett, Nancy L Dahlgren, and Victor Zue,
“Timit acoustic-phonetic continuous speech corpus,” Linguis-
tic data consortium, Philadelphia, vol. 33, 1993.

C Févotte, R Gribonval, and E Vincent, “Bss eval toolbox user
guide. irisa, rennes,” Tech. Rep., France, Tech. Rep. 1706,
2005.

Cees H Taal, Richard C Hendriks, Richard Heusdens, and Jes-
per Jensen, “An algorithm for intelligibility prediction of time—
frequency weighted noisy speech,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 19, no. 7, pp.
2125-2136, 2011.

90

