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ABSTRACT

We investigated whether a deep neural network (DNN)-based source
enhancement function can be self-optimized by reinforcement learn-
ing (RL). The use of a DNN is a powerful approach to describing
the relationship between two sets of variables and can be useful for
source enhancement function design. By training the DNN using
a huge amount of training data, sound quality of output signals are
improved. However, collecting a huge amount of training data is
often difficult in practice. To use limited training data efficiently,
we focus on the “self-optimization” of DNN-based source enhance-
ment function in which RL is commonly utilized in the development
of game playing computers. As a reward for RL, quantitative met-
rics that reflect a human’s perceptual score (perceptual score), e.g.,
perceptual evaluation methods for audio source separation (PEASS),
are utilized. To investigate whether the sound quality is improved by
RL-based source enhancement, subjective tests were conducted. It
was confirmed that the output sound quality of the RL-based source
enhancement function improved as the number of iterations was in-
creased and finally outperformed the conventional method.

Index Terms— Sound source enhancement, Time-frequency
mask, Reinforcement learning, Sound quality and perceptual score.

1. INTRODUCTION

Sound source enhancement has been studied for many years [1, 2, 3,
4, 5] because of high demand for its use for various practical applica-
tions such as automatic speech recognition [6, 7] , hearing aids, and
immersive audio field representation [8, 9]. The goal of this study
is to collect target sound sources in noisy environments. To achieve
this goal, time-frequency (T-F) masking has been commonly em-
ployed, e.g., Wiener filtering [2]. To accurately estimate T-F masks,
various approaches have been developed including multi-channel ap-
proaches, e.g., [3, 5], and statistical approaches, e.g., [4, 9].

Recently, deep neural network (DNN)-based sound source en-
hancement has been actively studied [7, 10, 11, 12, 13, 14, 15, 16].
In our previous works [12, 13], DNNs were utilized as a mapping
function to estimate T-F masks. Hershey et al. utilized a DNN as
a clustering function to estimate ideal binary masks [14]. To im-
prove the output signal quality of DNN-based source enhancement,
a huge amount of training data, which is composed of, e.g., observed
signals and supervised T-F masks, is needed. However, collecting a
huge amount of training data is often difficult in practice, which may
hinder the improvement of output signal quality.

To use limited training data efficiently, our strategy is to “self-
optimize” the source enhancement function—no explicit supervised
T-F mask is provided. As a self-optimization approach, reinforce-

Fig. 1. Concept of RL-based source enhancement

ment learning (RL) is commonly employed, especially in the devel-
opment of game playing computers [17, 18, 19]. In RL, instead of
defining supervised output, a reward needs to be defined; the reward
indicates the validity of adopted tactics [20]. In the development of
game playing computers, a game playing function, i.e., playing pol-
icy, is successfully self-optimized by designing the reward from an
explicit scoring function, e.g. win/lose or game score.

If an appropriate reward could be designed similar to the case of
game playing computers, a DNN-based source enhancement func-
tion may be able to be self-optimized by RL. In this study, RL-based
self-optimization is applied to the training of a DNN-based source
enhancement function by using a quantitative metric that reflects a
human’s perceptual score (perceptual score) as the reward, instead
of explicitly giving supervised T-F masks (Fig. 1). In this paper, we
focus on investigating if a DNN-based source enhancement function
can be self-optimized by RL with a reward calculated from a con-
ventional perceptual score, e.g., the perceptual evaluation of speech
quality (PESQ) [21] and perceptual evaluation methods for audio
source separation (PEASS) [22]. To investigate the validity of the
proposed RL-based source enhancement, output sound quality was
evaluated by both objective and subjective evaluations.

The rest of this paper is organized as follows. Section 2 in-
troduces the conventional DNN-based sound-source enhancement.
Then, in Section 3, a framework of the RL-based self-optimization
of source enhancement function is proposed. After investigating the
sound quality of output signals through several objective and subjec-
tive tests in Section 4, we conclude this paper with some remarks in
Section 5.

2. CONVENTIONAL METHOD

2.1. Sound source enhancement using time-frequency masking

In this paper, we consider the problem of determining a target source
Sω,k surrounded by ambient noise Nω,k. A signal observed with a

81978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



single microphone Xω,k is expressed as

Xω,k = HωSω,k +Nω,k, (1)

where ω = {1, 2, ...,Ω} and k = {1, 2, ...,K} denote the frequency
and time indices, respectively. Hω is the transfer function from the
target source to the microphone.

In sound source enhancement using T-F masking, the output sig-
nal Yω,k is obtained by multiplying a T-F mask to Xω,k as

Yω,k = Gω,kXω,k, (2)

where Gω,k is the T-F mask such as a frame-wise Wiener filter [2]
and ideal ratio mask (IRM) [7]. The ideal frame-wise Wiener filter
Gideal

ω,k [2] can be calculated by

Gideal
ω,k =

|HωSω,k|2

|HωSω,k|2 + |Nω,k|2
(3)

by assuming that the target source and surrounding noise are mu-
tually uncorrelated. However, HωSω,k and Nω,k in (3) would be
unknown in practice. Thus, we need to estimate HωSω,k and Nω,k

from Xω,k to obtain Gω,k and Yω,k.

2.2. Time-frequency mask estimation through DNN-mapping

The general statistical source enhancement approach estimates vec-
torized T-F masks for all frequency bins 1 Gk = (G1,k, ..., GΩ,k)

⊤,
here, ⊤ denotes transposition. In DNN-mapping-based source en-
hancement (named DNN-mapping hereafter) [7, 10, 11, 12, 13], Gk

is estimated with DNN parameter Θ = {W(l),b(l), l ∈ (2, ..., L)}
as

Ĝk ←W(L)z
(L−1)
k + b(L), (4)

z
(l)
k = σθ

{
W(l)z

(l−1)
k + b(l)

}
, (5)

where L, W(l), and b(l) are the number of layers, the weight matrix,
and the bias vector, respectively. The function σθ is a nonlinear ac-
tivation function, such as a sigmoid function. The input vector xk,
which is passed to the first layer of the network as z

(1)
k = xk, is

obtained by concatenating several frames of observation features to
account for previous and future frames, as

xk = (Xk−P , ...,Xk, ...,Xk+P )
⊤, (6)

Xk = (X1,k, ..., XΩ,k), (7)

where P is the context window size.
The MMSE-based objective function is widely used to train Θ,

namely the mean square error between DNN output Ĝω,k and the
ideal T-F mask Gideal

ω,k is minimized. The objective function is de-
signed by assuming that the target source is collected clearly by max-
imizing the SNR of the output signal given by

Θ← arg min
Θ

1

K

K∑
k=1

Ω∑
ω=1

∣∣∣Gideal
ω,k − Ĝω,k

∣∣∣2 , (8)

which is solved by using the back-propagation algorithm [23].
Since the number of parameters in Θ is large, we need to collect

a huge dataset composed of xk and Gideal
ω,k to improve the output

signal quality of DNN-mapping. However, collecting a huge amount
of training data is often difficult in practice, which may hinder the
improvement of the output signal quality.

1Instead of directly estimating the T-F mask, some approaches estimate
log-power spectra of a target source [10] or log SNR [12].

3. PROPOSED METHOD

In order to use limited training data efficiently, we apply RL-based
self-optimization to design a source enhancement function as shown
in Fig. 1. In this paper, a quantitative metrics that reflect a human’s
perceptual score such as the PESQ [21] and PEASS [22] are utilized
as the reward 2 of the RL, and the DNN-based source enhancement
function is sequentially optimized so as to maximize the reward.

3.1. Frame work of reinforcement learning for source enhance-
ment function optimization

Figure 2 shows the overall procedure of the proposed speech en-
hancement method. Generally, the RL schema requires a finite num-
ber of actions A = {a1, ..., aA} to be predefined [20]. In our
problem setting, an action a is defined by the a-th T-F mask Ga =
(G1,a, ..., GΩ,a)

⊤; thus, a finite number of actions can be given by
T-F mask templates G1,...,A. The action is selected in accordance
with the observation xk and its own selection policy Q(xk, a). To
select a suitable action, Q(xk, a) should be appropriately designed.
Namely, optimized Q(xk, a) would take a high probability value
when the T-F mask Ga leads to an output signal with high sound
quality.

Ĝk ← Gak
, (9)

ak ← arg max
a∈A

Q(xk, a). (10)

From (9)(10), it can be regarded thatQ(xk, a) discriminates the
optimal template Gak

. To accurately select the optimal template,
Q(xk, a) is implemented by DNN whose non-linear function of the
output layer is a softmax function as

Q(xk, a) =
exp(z

(L)
k,a )∑A

i=1 exp(z
(L)
k,i )

, (11)

z
(L)
k = W(L)

q z
(L−1)
k + b(L)

q (12)

because DNN is one of the most powerful discriminant functions.
Here, z(L) = (z

(L)
k,1 , ..., z

(L)
k,A)

⊤. Hereafter, sound source enhance-
ment using T-F mask estimated by (9)-(12) is named as DNN-RL.

In the RL schema, the parameter of DNN-RL Θq = {W(l)
q ,b

(l)
q }

is optimized by maximizing the “reward”, also known as Q-learning.
Thus, in order to design Θq appropriately, it is necessary to design
a reward that accurately evaluates the sound quality of the output
signal processed by the selected T-F masks.

3.2. Reward design for Q-learning

Although using a perceptual score Z directly as the reward for Q-
learning would be an intuitive way, it would be in fact difficult be-
cause Z is affected not only by the performance of the source en-
hancement but also by the noise environment, such as an environ-
ment with a high or low SNR. To avoid being affected by such exter-
nal factors, the relative value between the perceptual score calculated
from the output of the DNN-RL Z and that of the DNN-mapping
ZDNN is calculated as

R = tanh
{
α
(
Z − ZDNN

)}
, (13)

2The reward indicates the validity of adopted tactics [20]. In our problem
setting, the reward specifies the output signal quality of the RL-based source
enhancement function.
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Fig. 2. Overview of procedures in proposed method

where α > 0 is a scaling parameter of Z . This relative value is in-
spired by the victory or defeat in game playing [19]. If Z is higher
than ZDNN, i.e., DNN-RL won against the DNN-mapping, the re-
ward takes a positive value. If Z is lower than ZDNN, i.e., DNN-RL
lost to the DNN-mapping, the reward takes a negative value, i.e., a
penalty. Hyperbolic tangent clipping limits the scale of the percep-
tual score and aims to avoid a large gradient value described later.

In addition, the reward should be varied with time k because
a T-F mask is also time-variant. However, most existing percep-
tual scores, e.g., PESQ, cannot be calculated for each time k be-
cause their calculation requires multiple frames. Hence, a local mis-
action, i.e., fallacious T-F mask selection, would also be given a
low-perceptual score. To design a time varying reward, we utilize a
time-weight Ek in the reward calculation as

rk =

{
(1− Ek)R (R > 0)

EkR (other)
, (14)

Ek =
Ẽk

maxk∈K(Ẽk)
, (15)

Ẽk =

Ω∑
ω=1

|ln |Yω,k| − ln |HωSω,k||2 . (16)

As can be seen in (14)–(16), the time-weight 0 < Ek < 1 is the
normalized squared error between output Yω,k and target Sω,k. The
square error Ẽk around local mis-actions would become sufficiently
higher than that of other times. Thus, the normalized square error in
(14) works as a penalty for local mis-actions.

By using rk, the target value of action-value function Q̃(xk, ak)
is calculated as

Q̃(xk, ak) =

{
rk +maxa∈AQ(xk, a) (R > 0)

Q(xk, ak) (other)
, (17)

where if ak ̸= aMMSE
k , Q̃(xk, a

MMSE
k ) is calculated by

Q̃(xk, a
MMSE
k ) =

{
Q(xk, a

MMSE
k ) (R > 0)

Q(xk, a
MMSE
k )− rk (other)

, (18)

where aMMSE
k is the MMSE-sense T-F mask label calculated as

aMMSE
k ← arg min

a∈A

Ω∑
ω=1

||HωSω,k| − |Gω,aXω,k||2 . (19)

Since Q(xk, a) is an output of the softmax function (11), Q̃(xk, a)

is normalized and floored to satisfy
∑A

i=1 Q̃(xk, i) = 1 and
Q̃(xk, a) ≥ 0. The definition of the reward in (18) is not the

same as the rewards commonly used in RL schema. The intention
behind this definition is to prioritise the DNN-mapping if the RL-
based source enhancement fails to outperform the DNN-mapping,
i.e., R < 0, which has already been trained with the MMSE-based
objective function (8) since it implies that the MMSE-based action
aMMSE
k is better than current action ak. Thus, by subtracting the

negative reward rk from Q(xk, a
MMSE
k ), the action-value function

of MMSE-based action aMMSE
k is increased.

3.3. Training procedure

As shown in Fig. 2, the training of our RL-based source enhance-
ment is multistage processing (initialization and training). Here, we
describe the details of each processing stage.

In the initialization stage, T-F mask templates G1,...,A are cal-
culated, and the action-value function is pre-trained. As T-F mask
templates G1,...,A, cluster centers calculated by using the k-means
algorithm of Gideal

k are utilized. The action-value function, namely,
the DNN parameter Θq , is pre-trained in the MMSE sense. In partic-
ular, discriminative pre-training [24] to maximize the identification
rate of the MMSE-sense T-F mask label aMMSE

k is utilized to initial-
ize Θq . Here, the L-th layer parameters W(L),b(L) are initialized
with values that follow a normal distribution.

In the training stage, Θq is trained to maximize the reward. First,
an observation is simulated using a randomly selected target source
file and same frame-size of noise source from the training dataset.
Next, to accelerate the convergence of DNN training, an output sig-
nal is obtained using the T-F mask selected by using the ϵ-greedy
strategy [18]; the best action defined by (9)(10) is selected with prob-
ability 1− ϵ, and that with probability ϵ a random selection is made
instead. Then, the perceptual score and rewards are calculated by
(14), and finally, Θq is updated to minimize the following criteria.

Θq ← arg min
Θ

1

K

K∑
k=1

A∑
i=1

∣∣∣Q̃(xk, i)−Q(xk, i)
∣∣∣2 . (20)

In this paper, to minimize (20), the RMSProp algorithm with stan-
dard mini-batch stochastic gradient descent (SGD) was used [25].

4. EXPERIMENTS

4.1. Experimental conditions

We conducted objective and subjective evaluations to explore
whether the DNN-based source enhancement function can be self-
optimized by RL with PESQ or PEASS. As a comparison method,
we applied DNN-mapping and an ideal Wiener filter (3) to exhibit
the upper limit of performance due to T-F masking.
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Fig. 3. Perceptual score depending on the number of episodes. The
x-axis shows the number of episodes, and the y-axis shows the per-
ceptual score. The solid lines and the dashed lines are DNN-RL and
DNN-mapping, respectively.

The training/test dataset of target source and noise were created
from the ATR Japanese speech database [26] and the noise dataset
of CHiME-3 which consisted of four types of background noise files
including cafes, street junctions, public transport (buses), and pedes-
trian areas [27], respectively. The training dataset consisted of 3316
utterances spoken by 11 males and 11 females at SNRs of 0, 3, and
6 dB. The test dataset consisted of 100 utterances, different speakers
and sentences from the training dataset. For training and test, the
first half and the last half of the noise files were used, respectively.

For DNN-RL, action-value function had two hidden layers each
of which had 64 units. The number of T-F mask templates A was
32. The reward coefficient α for PESQ and PEASS-OPS was 20.0
and 1.0, respectively. The ϵ-greedy parameter ϵ was 0.01. For DNN-
mapping, the number of hidden layers was 2 and the number of units
in each hidden layer was 128. Instead of direct T-F mask estimation,
log-amplitude-spectrum ln |Sω,k| was estimated [10]. The dropout
algorithm was used as regularization algorithms to avoid over-fitting
[10]. The DNN was initialized by discriminative pre-training [24],
and a standard mini-batch SGD with momentum was used for fine-
tuning. For each method, the context window size P = 5. The ac-
tivation functions of the hidden layers were sigmoid. To avoid over-
fitting, Xk and Gk were compressed by B = 64 mel-filterbanks,
and the estimated T-F masks were transformed to a linear frequency
, i.e., short-time Fourier transform (STFT), domain by spline inter-
polation. The frame size of the STFT was 512 and the frame was
shifted by 256 samples.

4.2. Verification experiments on reinforcement learning

We investigated the relationship between the number of episodes and
the perceptual score. An episode is a set of training procedure for
an utterance; enhancing speech, calculating a perceptual score, and
updating the DNN-RL parameters. If Q(xk, a) were successfully
trained by RL, the perceptual score of the output signal would in-
crease depending on the number of episodes. In this experiment, the
noises were mixed to the test dataset at SNRs of 0 and 6 dB.

Figure 3 shows the perceptual score depending on the number
of episodes. Both perceptual scores were increased as the number of
episodes increased. In addition, since the proposed procedure was
specialized to maximize perceptual scores, DNN-RL outperformed
DNN-mapping. These results suggest that the proposed procedure
is effective at maximizing arbitrary objective measure, such as the
perceptual score.

Fig. 4. Results of subjective evaluation. The error bars denote stan-
dard deviation. The dashed line shows the MOS of DNN-mapping.

4.3. Subjective evaluation

We conducted a mean-opinion-score (MOS) test to investigate the
sound quality of the output signals provided by DNN-RL. Seven
participants evaluated sound quality of output signals. We asked the
participants to rate the sound using a 5-point scale: 1 – Bad, 3 – Fair,
and 5 – Excellent. To remove outliers, top and bottom 5% scores
were removed for MOS calculation.

The participants evaluated the ideal Wiener filter, a DNN-
mapping, and six DNN-RLs. DNN-RLs consisted of two types of
perceptual scores, i.e., PESQ and PEASS-OPS, and three types of
episode numbers, i.e., 500, 5,000, and 50,000 episodes. The partic-
ipants evaluated ten files for each method. In this experiment, the
street junction noise was mixed to the test dataset at SNR of 3 dB.

Figure 4 shows the results of the subjective test. The MOSs
of DNN-RL were improved according to the number of episodes,
and statistically significant differences between 500 episodes and
50,000 episodes were observed in an unpaired one-sided t-test (p-
value = 0.05). In addition, the MOSs of 50,000 episodes outper-
formed DNN-mapping and statistically significant differences were
observed in an unpaired one-sided t-test (p-value = 0.05).

From these results, we found that the DNN-based source en-
hancement function can be optimized by RL and sound quality of
output signals were improved by using a perceptual score as the re-
ward. Thus, it can be concluded that the proposed method can use
limited training data efficiently than the conventional training proce-
dure of DNN-based source enhancement function.

5. CONCLUSION

In this paper, we investigated whether a DNN-based source enhance-
ment function could be self-optimized by RL with a reward calcu-
lated from a conventional perceptual score, e.g., PESQ and PEASS.
To investigate the validity of the proposed method, the output sound
quality was evaluated by both objective and subjective evaluations.
In these experiments, we found that the DNN-based source enhance-
ment function can be optimized by RL and sound quality of output
signals were improved. Thus, it can be concluded that the pro-
posed method can use limited training data efficiently for DNN-
based source enhancement function training.

A future prospect of this study is development of new perceptual
score which can evaluate sound quality without target source. If
such a perceptual score could be developed, training data collection
process would become easy because training data of target source
would no longer be needed and the range of application of DNN-
based source enhancement would be more extended.
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