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ABSTRACT

We show that a Modular Neural Network (MNN) can combine var-
ious speech enhancement modules, each of which is a Deep Neural
Network (DNN) specialized on a particular enhancement job. Differ-
ently from an ordinary ensemble technique that averages variations
in models, the propose MNN selects the best module for the unseen
test signal to produce a greedy ensemble. We see this as Collabo-
rative Deep Learning (CDL), because it can reuse various already-
trained DNN models without any further refining. In the proposed
MNN selecting the best module during run time is challenging. To
this end, we employ a speech AutoEncoder (AE) as an arbitrator,
whose input and output are trained to be as similar as possible if its
input is clean speech. Therefore, the AE can gauge the quality of
the module-specific denoised result by seeing its AE reconstruction
error, e.g. low error means that the module output is similar to clean
speech. We propose an MNN structure with various modules that
are specialized on dealing with a specific noise type, gender, and in-
put Signal-to-Noise Ratio (SNR) value, and empirically prove that it
almost always works better than an arbitrarily chosen DNN module
and sometimes as good as an oracle result.

Index Terms— Speech Enhancement, Source Separation, Deep
Learning, Modular Neural Networks, Autoencoders

1. INTRODUCTION

Deep learning has become one of the most popular frameworks for
speech enhancement. The basic strategy of applying a Deep Neural
Network (DNN) for the enhancement job is to learn a network that
approximates the mapping function from a contaminated speech
signal to its cleaned-up version. Various input and output features
have been proposed. Xu et al. introduced a pre-training based
Speech Denoising AutoEncoder (SDAE), which uses magnitudes
of Fourier coefficients for both input and output [1]. Ideal Binary
Masks (IBM) [2] and Ideal Ratio Masks (IRM) [3] are another com-
mon target representations. Huang et al.’s Deep Recurrent Neural
Networks (DRNN) added the recurrent structure to SDAE, along
with a discriminative term, too [4]. More specialized speech fea-
tures showed state-of-the-art performances such as cochleagrams
[5], Mel-Frequency Cepstrum Coefficients (MFCC) [3], and their
combinations. Structural variations have been also investigated in
the literature: deep clustering based on the independence of speak-
ers [6], Long Short-Term Memory (LSTM) to handle long-term
dependency of time-structured speech signals [7], deep unfolding
networks to substitute the iterations in some estimation algorithms
with a number of hidden layers [8], etc.

Although it is common to adapt the model for the unseen noise
types in the dictionary-based approaches, in the deep learning-based
models the adaptation largely relied on the generalization power of
the already trained network. For example, in the semi-supervised
source separation scenario, the system can learn the unseen noise
dictionary from the noise source mixed in the test signal during run
time along with the ordinary speech dictionary [9, 10, 11]1. As
shown in [10], this semi-supervised technique is prone to overfit-
ting due to the lack of the knowledge about the noise source. Mean-
while, Liu et al. performed some experiments to see the generaliza-
tion power of a SDAE [14]. If the network was not exposed to a
specific noise type during training, its performance degrades for the
mixtures with that particular noise. Similar tests confirmed a subop-
timal performance for unseen speakers and mixing weights as well.

Recently, there have been DNNs that adapt to the unknown noise
type by refining an already trained SDAE during run time. Kim and
Smaragdis proposed an Adaptive SDAE (ASDAE) system, which is
a vertical concatenation of two AEs: the bottom SDAE trained from
known mixtures of speech and noise (to denoise them) and the top
AE trained only from pure speech [15]. It is based on the assump-
tion that a properly trained AE for a source of interest (i.e. speech)
can be used to judge the similarity between its input signal and the
source, because the AE’s reconstruction error will be low if the AE’s
input is speech as well, while for a non-speech signal the autoencod-
ing performance is not guaranteed. Therefore, for a test mixture the
bottom SDAE first estimates a cleaned-up version, which is subse-
quently fed to the top AE to calculate AE’s reconstruction error as a
measure of the denoising quality. Then, this reconstruction error is
used to fine-tune the bottom SDAE through an additional backpropa-
gation step. Another primitive refining scheme was proposed earlier
by Williamson et al. [2], where an NMF speech dictionary was used
to further clean up the DNN results, although the use of NMF was
limited to smoothing the results rather than fine-tune the main DNN.
More recently, separable deep autoencoder showed promising de-
noising performance by having two AEs that model speech and noise
separately. In there, the speech AE and an embedded NMF dictio-
nary for an additional speech modeling are trained in advance, while
the noise AE is trained from the test signal [16]. Those adaptive
DNN models for speech denoising have focused only on adapting to
unseen noise types. However, in practice we face a lot more vari-
ations such as in the ratio of sources’ contributions, the frequency
response of microphones, amount of reverberations, etc.

The proposed Modular Neural Network (MNN) assumes that it
is easier to learn a smaller specialized DNN that work better for a

1Nonnegative Matrix Factorization (NMF) [12, 13] and its variations are
a common choice for the dictionary learning algorithm.
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particular enhancement job than a larger DNN for the general speech
enhancement task as partially proven in [17]. Similarly, an MNN
consists of local experts that provide various outputs for a test sam-
ple and a gating network that chooses the best module [18]. The
proposed MNN also includes the specialized speech enhancement
modules as experts, while it uses the speech AE as its arbitrator. As
the AE can be learned without any information about the partici-
pating modules, the proposed MNN is more scalable than the cases
that need to learn the discriminative gating network for the selection.
This can be seen as a Collaborative Deep Learning (CDL) system as
well, because now we can invite any already-trained DNNs with dif-
ferent properties, and then the proposed selection scheme produces
a greedy ensemble of them as the optimal result for the current test
signal. The use of AE to determine the speech enhancement quality
of another module is similar to the use in ASDAE, but the proposed
MNN differs from ASDAE in that it accepts the best modular output
instead of refining the modules so that it can prevent overfitting.

2. DNN FOR SUPERVISED AND UNSUPERVISED
LEARNING

In this section we review two basic DNN systems for supervised
speech denoising and unsupervised speech modeling, which are then
combined to build the proposed system in Section 3.

2.1. DNN for Supervised Speech Denoising

We start from a D-dimensional complex-valued Fourier spectrum at
t-th time frame as an instantaneous mixture of a clean speech and
noise spectra: xt = st+nt

2. Usually the input x (sometimes along
with its consecutive frames as well) goes through a feature extraction
procedure to construct the input feature vector x̄ ∈ RK

(1)

. Now the
goal of the training job is to learn the mapping function FDNN to
produce an output vector y ∈ RD , which is either an estimation
for the original speech features or a mask that can be later used to
recover the speech. For the latter case, the feedforward and masking
procedures work as follows:

y = FDNN (x̄), ŝ = y � x, (1)

where � stands for an element-wise multiplication and ŝ is an esti-
mation of s. For training, we can calculate the magnitude ratio as
the masking vector m = |s|

|s+n| , and use them to prepare the train-
ing pairs (x̄,m). Hence, the training objective for a DNN with L
hidden layers is to minimize the sum of errors between the target
masking vectors and the estimated ones:

arg min
W (1)

,··· ,W (L+1)

∑
t

E
(
mt

∥∥FDNN (x̄t)
)
, (2)

where W (l) ∈ RK
(l+1)×(K(l)+1) holds the network parameters at l-

th layer, which participates in the feedforward procedure as follows:

FDNN (x̄) = z(L+2), z(1) = x̄,

z(l+1) = g(l)
(
W (l) · [

(
z(l))>, 1]>

)
. (3)

Note that z(l) ∈ RK
(l)

is a vector ofK(l) hidden unit outputs. There
are a lot of choices for the activation function g(l), but the logis-
tic function is commonly used for the last layer to ensure the soft

2From now on we drop the frame index for the notational convenience.

masks between 0 and 1. Note also that the proposed model selec-
tion scheme works on any choice of the target representation of the
participating DNNs if they can estimate a speech approximation ŝ.

The mapping function FDNN could have been trained to per-
form well only on a subset of infinitely many mixing scenarios. For
example, it can target on denoising only a particular person’s noisy
speech. On the other hand, the DNN might work for only a partic-
ular noise type, e.g. airplane noise. Finally, the DNN might have
been trained only for a few choices of Signal-to-Noise Ratio (SNR)
between the time domain signals s and n with sample index τ , e.g.
SNR = 10 log10

∑
τ s(τ)

2∑
τ n(τ)

2 . In theory, there can be a very large
and deep network that has been trained on all possible mixing cases.
However, it is of our interest whether there is a systematic way to
combine all the specialized models and to make the best out of them.

2.2. Autoencoders for Unsupervised Speech Modeling

AEs are another kind of neural networks whose target variables are
set to be the same with the input,

E
(
s̄
∥∥FAE(s̄)

)
. (4)

Therefore, a straightforward AE that models a source, e.g. speech,
can be trained by using clean speech spectra for both input and target.
Magnitudes of the complex-valued Fourier coefficients, s̄ = |s|, can
serve as the features for our purpose.

In the deep learning literature, a DAE has been also used to pro-
vide a greedy layer-wise feature learning [19, 20], where the input
vector goes through random perturbations such as masking noise:

s̃ = |s| � ν, νi ∼ Bernoulli(p), (5)

E
(
s̄
∥∥FDAE(s̃)

)
, (6)

with p as the parameter for the Bernoulli distribution. Since the
DAE has to produce the clean example from the corrupted inputs,
the learned features are more robust and representative for the later
use. Although the input and target are not exactly same, this kind
of DAEs can still be seen as an unsupervised modeling because the
corruption is done randomly without any supervision.

A similar concept can be found in the dropout technique, too
[21]. During the feedforward process, dropout randomly turns off a
certain number of units with the layer-wise Bernourlli random vari-
able, ν(l) ∼ Bernoulli(p(l)), as its masking value:

z(l+1) = g(l)
(
W (l) · [

(
ν(l) � z(l))>, 1]>

)
, (7)

which is a procedure having a similar effect of averaging multiple
thinned versions of the network. AEs with the dropout feature can
also be seen as a DAE since not only their hidden units, but their
input units are corrupted with masking noise.

A clarification for SDAE: As we have reviewed in Section 1,
SDAEs have been actively used to directly approximate the mapping
from the contaminated speech to the clean ones in the context of su-
pervised learning [1, 14]. For these supervised SDAEs, the objective
is somewhat similar to that of an unsupervised AE in (4) because
their target variables are the clean speech features, too. However, it
is different in the sense that it directly involves a few specific types
of noise known in advance to perturb the input:

E
(
s̄
∥∥FSDAE(x̄t)

)
. (8)

Hence, those SDAEs are not one of the unsupervised speech mod-
eling techniques. Instead, it can serve as one of the participating
enhancement modules in the proposed MNN system for CDL.
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Fig. 1. The proposed model selection procedure during run time

3. THE PROPOSED MODULAR NEURAL NETWORK FOR
COLLABORATIVE DEEP LEARNING

3.1. The Proposed Architecture

FDNNj is one of the J participating DNN modules in the MNN,
which has been trained on only a subset of all the possible types
of corruption. The structure of the modules can also vary in their
number of layers and hidden units, choice of activation functions,
use of recurrence and convolution, etc. Once each of them estimates
a clean speech signal ŝDNNj , it is fed to the model selector FDAE
in the form of a magnitude spectrum, |ŝDNNj |.
FDAE is trained in advance to produce a clean magnitude

speech spectrum for its input of the same kind, while for the ro-
bustness to the various imperfection of ŝDNNj we choose to use
a dropout-based DAE as in (6) rather than an AE trained on clean
speech. The key assumption is that a properly trained DAE will keep
its clean speech spectra input intact, while its behavior for an unseen
non-speech spectrum is not guaranteed. Consequently, the DAE
error E

(
ŝDNNj

∥∥FDAE(|ŝDNNj | � ν(1))
)

measures how much the
input and speech are alike. Fig. 1 depicts this run-time process when
J = 3. ˆ̂sDNNj = FDAE(|ŝDNNj | � ν(1)) denotes the run-time
DAE output. The final output of the proposed MNN system is the
DNN module’s output whose subsequent DAE error is the lowest:

FCDL(x̄) = ŝDNNj∗ , (9)

j∗ = arg min
j∈{1,··· ,J}

E(|ŝDNNj |
∥∥∥|ˆ̂sDNNj |) (10)

Alternatively, SNR can capture the discrepancy in time domain, too:

10 log10

(∑
τ

ŝ
2
DNNj

(τ)

)/(∑
τ

(
ŝDNNj (τ) − ˆ̂sDNNj (τ)

)2)
. (11)

3.2. Computational and Spatial Complexity

The run-time computational and spatial complexity is clearly an is-
sue with the proposed MNN for CDL method as every participating

DNN needs to run a feedforward step. There are some promising ap-
proaches to compressing DNNs such as a low-rank approximation of
the weight matrices [22] and networks that operate using bit logics
and binary variables [23, 24]. Since the compressed networks claim
their efficiency during run time, they can substitute the comprehen-
sive ones for the model selection purpose. After the AE selection is
done, we finally run the the best comprehensive DNN. We leave this
network compression issue to future work.

4. EXPERIMENTS

4.1. The Speech AE

Randomly chosen 400 utterances from the TIMIT training set are
used for training (20 speakers × 2 genders × 10 utterances). Short-
time Fourier transform with an 1024-point frame size and a 75%
overlap is used for the time-frequency conversion. Resilient back-
propagation (Rprop) [25] technique is employed, and their param-
eters are found through a validation with additional four speakers:
0.5, 1.5, 10−7 and 10−1 for backtracking, acceleration, and mini-
mum and maximum step sizes, respectively. We choose a modified
Rectified Linear Unit (ReLU) as proposed in [14] for the activation
function. Dropout parameters p(l) are all set to be 0.8. The sum of
the squared error is minimized during training. The batch size was
set to be 1,000. They all converge in 5, 000 iterations.

Two DAEs with different network topologies model this speech
data set:FDAE128 andFDAE2048×2.FDAE128 is with a single hidden
layer of 128 units. A 513-dimensional magnitude spectrum works
as its input and target. FDAE2048×2 is with two hidden layers, each
of which has 2048 units. ForFDAE128, we concatenate three spectra∣∣[s>t−1, s

>
t , s

>
t+1]>

∣∣ to take the temporal dynamics of the signal into
account, while its target is still a single spectrum, i.e. |st|. The two
DAEs are compared to see if the larger and more complicated DAE
measures the speech quality more correctly than the smaller one.

4.2. Experiment 1: Variations in the Noise Types

For training we prepare 60 clean utterances per a noise type: (6
speakers)×(2 genders)×(5 utterances). They are then mixed up with
one of three noise types chosen from {“Birds”, “Typing”, “Motor-
cycle”} [11] at 0 dB SNR. We train one 512×2 DNN per one of the
three noisy speech datasets as described in Section 4.1, except some
facts that (a) three input frames are always concatenated to form an
input vector (b) the target is a masking vector of the center frame.
The logistic function ensures the soft masking at the final layer. As
for evaluation, we use both Signal-to-Distortion Ratio (SDR) [26]
and Short-Time Objective Intelligibility (STOI) [27].

Three test datasets are from 20 gender-balanced clean utterances
(5 from each of 4 speakers) mixed with different parts of the same
three noise types. As shown in Table 1, if a DNN is trained and tested
for the same kind of mixture, it performs the best: 12.12, 12.74 and
10.15 dB for the SDR and 0.8501, 0.8581, and 0.8260 for STOI.
On the other hand, if we randomly choose one of the three trained
systems at every time, the performance is a lot worse (the “Chance”
column). A truly optimal case is when we know the best module for
each test sample (“Oracle” column), although in this experiment the
system trained on the same noise type is always the best choice.

Both selection metrics proposed in (10) and (11) assess the qual-
ity of all three participating DNNs’ results, and then we average the
SDR or STOI values of the selected results for the 20 test utterances.
For all cases, the proposed method is better than chance. When one
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Final Test Noise Train Noise Chance SNR (11) AE Recons. Error (10) OracleMetric Birds Typing Motorcycle FDAE128 FDAE2048×2 FDAE128 FDAE2048×2

SDR
Birds 12.12 0.00 0.49 4.21 12.12 12.12 12.12 12.12 12.12

Typing 0.18 12.74 -0.83 4.03 12.74 12.74 12.74 12.74 12.74
Motorcycle 5.80 3.40 10.15 6.45 9.93 9.81 9.93 9.81 10.15

STOI
Birds 0.8501 0.7820 0.7636 0.7986 0.8501 0.8501 0.8501 0.8501 0.8501

Typing 0.7130 0.8581 0.7161 0.7624 0.8581 0.8581 0.8581 0.8581 0.8581
Motorcycle 0.7822 0.7737 0.8260 0.7940 0.8243 0.8229 0.8260 0.8229 0.8260

Table 1. Average SDR and STOI values of the final results chosen from three DNNs based on the proposed speech AE error.

Final Test Gender Train Gender Chance SNR (11) AE Recons. Error (10) OracleMetric Male Female FDAE128 FDAE2048×2 FDAE128 FDAE2048×2

SDR Male 10.38 8.15 9.27 9.78 10.10 9.65 10.06 10.45
Female 7.58 11.00 9.29 10.85 10.91 10.76 10.79 11.02

STOI Male 0.8561 0.7951 0.8256 0.8362 0.8447 0.8338 0.8457 0.8561
Female 0.8026 0.8503 0.8265 0.8477 0.8491 0.8467 0.8479 0.8505

Table 2. The run-time selection results from two DNNs for two genders.

Final Test SNR Train SNR Chance SNR (11) AE Recons. Error (10) OracleMetric -5 dB 0 dB +5 dB FDAE128 FDAE2048×2 FDAE128 FDAE2048×2

SDR
-5 dB 6.89 7.00 6.37 6.75 7.01 6.94 7.03 7.01 7.27
0 dB 9.35 9.87 9.91 9.71 10.03 10.07 9.92 10.04 10.25

+5 dB 11.55 12.24 12.79 12.19 12.64 12.80 12.49 12.65 12.90

STOI
-5 dB 0.7569 0.7535 0.7380 0.7495 0.7494 0.7470 0.7508 0.7496 0.7609
0 dB 0.8253 0.8305 0.8268 0.8276 0.8289 0.8283 0.8289 0.8289 0.8340

+5 dB 0.8775 0.8837 0.8863 0.8825 0.8856 0.8864 0.8850 0.8855 0.8883

Table 3. Final results from DNNs that are dedicated to various input SNRs.

of the systems is absolutely better than the others (“Birds” and “Typ-
ing”) the proposed system reaches the oracle case. The shallow and
deep AEs performs similarly in general, except the “Motorcycle”
case. We conjecture that a small AE is good enough when the par-
ticipating DNNs are very specialized on a noise type like this.

4.3. Experiment 2: Variations in Gender

Next, we construct two datasets, each of which is from either 12
male or 12 female speakers. This time all ten noise types used in
[11] are mixed with the 12 × 5 clean utterances, totalling 600 per
gender. Two gender-specific 2048×2 DNNs are trained from these
datasets, respectively. For testing we collect 10 × 5 utterances per
gender and mix them with the same ten noise types.

The module trained from the same gender performs better on the
test set with the same gender than the wrong choice: 10.38 vs 8.15
and 11.00 vs 7.58 dB in SDR (Table 2), although their gap is smaller
than Table 1. It might be because there can be a male test speaker
whose voice is more similar to a female training speaker and vice
versa. Similarly, the oracle case is better than the correct choice of
DNN. Consequently, in this experiment the AEs’ decision is not per-
fect, yet nearing the oracle case and showcasing much better results
than chance. Note that FDAE2048×2 performs better than FDAE128 .

4.4. Experiment 3: Variations in the Input SNR

For the final experiment, we randomly choose gender-balanced 12
speakers and their five utterances for training. Then, all ten noise
types are mixed to build a set of 600 noisy utterances. For each
set of 600 signals, we fix the loudness of the noise source to make

the mixture has one of three SNR values, -5, 0, and +5. We train
three 2048×2 DNN modules on these. Table 3 shows that the differ-
ence between the DNN modules is minute. For example, for the test
signals with -5 dB SNR, the DNN system trained on 0 dB mixtures
performs better than the correct choice in terms of SDR (7.00 vs 6.89
dB), because the correct DNN separated out the interfering noise too
much, while introducing more artifacts which in turn decreased the
overall separation quality. Yet, the DNN system trained on the -5 dB
samples performs the best in terms of STOI. The proposed systems
work better than chance most of the time (except the STOI value for
-5 dB input case). FDAE2048×2 works better than FDAE128 in dis-
tinguishing the well denoised results that are only slightly different
from each other (0 and +5 dB inputs). Note that this generic DNN
with 0 dB mixture (9.87 dB) performs worse than the smaller noise-
specific ones in Table 1, so it empirically shows that the correctly
chosen specialized module outperforms the large generic network.

5. CONCLUSION

We proposed a collaborative deep learning method where multiple
specialized DNN modules participate in the denoising job to pro-
duce various intermediate results. A DAE trained from clean speech
judged the quality of the intermediate denoised results and chose the
best one. The proposed MNN method showed better performance
than the average of the candidate results in general. A shallow DAE
was enough for most of the jobs, while the other deeper and larger
DAE was more suitable for confusing high quality cases. The sys-
tem was tested with variations in the noise type, gender, and input
SNR. As future work, we plan to investigate more variations, e.g.
reverberations and LSTMs for both DNN modules and DAEs.
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