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ABSTRACT

In this paper, we present an optimal multi-channel Wiener filter,
which consists of an eigenvector beamformer and a single-channel
postfilter. We show that both components solely depend on a speech
presence probability, which we learn using a deep neural network,
consisting of a deep autoencoder and a softmax regression layer. To
prevent the DNN from learning specific speaker and noise types, we
do not use the signal energy as input feature, but rather the cosine
distance between the dominant eigenvectors of consecutive frames
of the power spectral density of the noisy speech signal. We com-
pare our system against the BeamformIt toolkit, and state-of-the-art
approaches such as the front-end of the best system of the CHiME3
challenge. We show that our system yields superior results, both in
terms of perceptual speech quality and classification error.

Index Terms— multi-channel speech enhancement, eigenvector
beamforming, speech mask estimation

1. INTRODUCTION

In recent years, conventional single channel speech enhancement
methods have been outperformed by data-driven approaches. deep
neural networks (DNNs) have been employed to discriminatively
learn a gain mask for separation of the speech and noise components
in a noisy speech signal [1–5].

For multi-channel speech enhancement, acoustic beamforming
still outperforms single-channel methods due to the underlying phys-
ical model that can be exploited [6]. However, DNNs have proven
to be useful for learning a postfilter subsequent to a beamformer [7].
The generalized sidelobe canceller (GSC) is one of the most popular
beamformer designs. It requires an estimate of either the direction
of arrival (DOA) or the acoustic transfer function (ATF) from the
speech source to the microphones, which is then used as steering
vector [6]. For DOA estimation, the geometry of the microphone
array has to be known, while ATF estimation requires knowledge
of the statistics of the speech signal. More advanced beamforming
techniques require an estimate of the power spectral density (PSD)
matrix of the noise signal [8].

In this paper, we first show that the speech presence probability
mask for estimating the speech and noise statistics is sufficient to
construct an optimal multi-channel Wiener filter, consisting of an
eigenvector GSC (EV-GSC) and a single-channel postfilter. Re-
cently, various works have been presented on how to obtain the
speech presence probability using neural networks, e.g. [1, 3, 9].
Most methods rely on the energy of the noisy speech signals, and
therefore are highly dependent on the array geometry and the statis-
tics of the speech and noise presented in the training data. We aim

to use a more general approach, which requires as little assumptions
about the signals as possible: We only assume that the speaker is
moving slowly, and that the noise is non-stationary. We empirically
observed that the eigenvectors of the PSD matrix of the noisy speech
signals provide a good measure for speaker activity, independent of
signal energy and array geometry. Based on this observation, we
estimate the speech presence probability mask using a simple DNN
structure consisting of a deep autoencoder with a softmax regression
layer. The deep autoencoder learns a sparse representation of the
eigenvectors of the PSD matrix of the noisy speech signals for each
frequency bin. The softmax regression layer discriminatively maps
this representation to the speech presence probability mask. We
empirically compare our multi-channel speech enhancement system
to three state-of-the-art approaches: The BeamformIt-toolkit [10], a
GSC with steering vector estimation and an adaptive blocking ma-
trix (ABM) [7], and the front-end of the best CHiME3 system [11],
which uses a complex Gaussian mixture model (CGMM-EM) to
estimate the speech and noise statistics.

This paper is structured as follows: After the introduction of
the system model in Section 2 we show the importance of the
speech presence probability for constructing an optimal multi-
channel Wiener filter in Section 3. In Section 4 the estimation
of the speech presence probability is presented. In Section 5 we
evaluate our model on CHiME4 data. Section 6 concludes the paper.

2. SYSTEM MODEL

We use the CHiME4 setup [10], which provides multi-channel
recordings of a single speaker embedded into ambient noise. The
recordings have been made with M = 6 microphones mounted to
a tablet computer. Both real and simulated data is provided, as well
as a ground truth (i.e. speaker separated from noise). This allows
to evaluate the performance of our system based on the true speech
signal. According to this scenario, the signal model is given as

Z(k, l) = S(k, l) + N(k, l), (1)

where Z(k, l) denotes the M -channel recordings in the frequency
domain, stacked to a M × 1 vector at frequency bin k = 1, . . . ,K
and time frame l. S(k, l) and N(k, l) denote the separated multi-
channel speech and noise components.1 For uncorrelated speech and
noise signals, the PSD matrix of the input is given as

ΦZZ = ΦSS + ΦNN . (2)

1For enhanced readability, the frequency and time frame indices will be
omitted except where necessary.

66978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



Since ΦSS contains a single speech source, it can be decomposed
into the speech PSD ΦS and the acoustic transfer functions (ATFs)
A from the speaker to the microphones [12], i.e.

ΦSS = AAHΦS . (3)

3. MULTI-CHANNEL SPEECH ENHANCEMENT

The MSE-optimal multi-channel Wiener filter for estimating the sin-
gle speaker from the inputs Z(k, l) is given as [13, 14]

WOPT = Φ−1
ZZΦZS

=
[
AAHΦS + ΦNN

]−1
ΦSA

=
Φ−1
NNA

AHΦ−1
NNA︸ ︷︷ ︸

WMVDR

· ΦS

ΦS +
[
AHΦ−1

NNA
]−1︸ ︷︷ ︸

G= ξ
1+ξ

,
(4)

where ΦZS is the cross-PSD of Z(k, l) and S(k, l), and the vector
WMVDR can be recognized as the MVDR beamformer. G depicts
a real-valued, single-channel gain mask. From (4), ξ is given as

ξ = ΦSA
HΦ−1

NNA (5)

which can be recognized as the SNR at the beamformer output, i.e.

ξ =
WH

MVDRΦSSWMVDR

WH
MVDRΦNNWMVDR

. (6)

3.1. Eigenvector Beamforming

In real-world applications, both the ATFs A and the noise PSD
matrix ΦNN are hard to estimate. The latter might even be ill-
conditioned and therefore not invertible. As a consequence, the
MVDR beamformer in (4) is difficult to be implemented. Instead,
the GSC is widely used [6, 15–18]. The GSC consists of a steer-
ing vector F , a blocking matrix B, and an adaptive interference
canceller HAIC , i.e.

WMVDR ≈WGSC = F −BHAIC . (7)

While the GSC avoids the inversion of ΦNN , the steering vector
F is still a crucial component, as it directs the beamformer into the
direction of the desired speech signal. Obviously, the optimal steer-
ing vector would be the ATFs A, but they are unknown and hard to
estimate in reverberant environments [6]. Eigenvalue decomposition
of (3) yields

ΦSS = vSv
H
S λS = AAHΦS , (8)

where λS and vS are the principal eigenvalue2 and eigenvector of
ΦSS , respectively. It can be seen that vS points towards the speech
source. The eigenvector includes reverberations and early echoes of
the target signal, hence it qualifies as a substitute for the unknown
ATFs A, and can be used as steering vector F . This concept is
known as eigenvector or subspace beamforming [12, 19] where

F := vS . (9)

However, ΦSS cannot be directly observed, but for the purpose
of eigenvector decomposition it can be approximated using

Φ̂SS(k, l) =

∑T
t=1 Z(k, t)ZH(k, t)pSPP (k, t)∑T

t=1 pSPP (k, t)
, (10)

2Note that ΦSS is of rank 1 for a single speaker, see (3).

where pSPP is the speech presence probability (0 ≤ pSPP ≤ 1),
and T is a number of frames during which the dominant eigenvector
vS is assumed to be constant, i.e. the speaker is not moving. Intu-
itively, using (9), a blocking matrix which satisfies BHA

!
= 01×M

is then given by

B = I − FFH = I − vSv
H
S , (11)

where I is the M ×M identity matrix. A similar concept is also
used in [20]. The adaptive interference canceller HAIC is usu-
ally implemented using an adaptive normalized least mean squares
(NLMS) filter [21]. Adaption of this filter has to be stopped while
the speaker is active, otherwise target cancellation occurs. Usually
this is done using voice activity detection (VAD). However, we used
a state-space model [22] to adapt HAIC , which does not require a
VAD.

Note that the steering vector F and the blocking matrix B de-
pend on the dominant eigenvector vS , hence we refer to this beam-
former as eigenvector GSC (EV-GSC). Furthermore, vS depends
on the speech presence probability pSPP , see (10). Therefore, the
performance of the beamformer depends on an accurate estimate of
pSPP .

3.2. Optimal Postfilter

Analogously to (10), the noise PSD matrix ΦNN (k, l) can be ap-
proximated as

Φ̂NN (k, l) =

∑T
t=1 Z(k, t)ZH(k, t)

(
1− pSPP (k, t)

)∑T
t=1

(
1− pSPP (k, t)

) . (12)

Using (6), the SNR at the beamformer output is

ξ =
WH

GSCΦ̂SSWGSC

WH
GSCΦ̂NNWGSC

(13)

and the postfilter from (4) is given as G = ξ
1+ξ

. Similar as for the
beamformer, the postfilter solely depends on the speech presence
probability pSPP .

4. SPEECH MASK ESTIMATION

As demonstrated above, the speech presence probability pSPP is
sufficient to construct an optimal multi-channel Wiener filter con-
sisting of our EV-GSC and a postfilter. Therefore, the estimation of
pSPP is the key component of our multi-channel speech enhance-
ment system. There are a number of concepts for estimating a speech
mask from noisy data, like parameter estimation using a CGMM
[11], or neural networks operating on spectrogram data [1,3,9]. Usu-
ally, these methods use the signal energy or PSDs as feature vectors,
and are therefore highly dependent on the array geometry and statis-
tics of the speech and noise presented in the training data.

However, in a scenario like CHiME4, no reliable assumptions
can be made about the signal statistics. The speaker position is un-
known, and the background noise is non-stationary and can contain
all sorts of sounds from passing-by cars, transient bursts from pneu-
matic bus doors to human speech. The number of usable micro-
phones can also change, due to microphone failures. Further the
array geometry might be unknown, like for the 2 channel track in
CHiME4 [10]. Also, the microphones may not be matched. In such
situations, the signal power alone is no reliable indicator for speech
presence. We observed that the eigenvectors of the PSD matrix ΦZZ
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of the noisy inputs provide a good measure for speaker activity, inde-
pendent of signal energy and array geometry. We only assume that
the speaker is slowly moving, and that the noise is non-stationary.
Eigenvalue decomposition of ΦZZ gives

ΦZZ =

M∑
m=1

λZ,mvZ,mvHZ,m, (14)

where λZ,m and vZ,m are the eigenvalues and eigenvectors of ΦZZ .
We denotem = 1 as the dominant eigenvector vZ,1. Note that λZ,m
corresponds to the signal power, and vZ,m corresponds to the spatial
information embedded in the signal.

4.1. Visualization of Eigenvectors

For M = 6 channels, the complex-valued eigenvectors vZ,1(k, l)
lie on the surface of a 11-dimensional unit sphere3. In Figure 1 we
show vZ,1(k, l) for 10,000 consecutive frames l from the ’embed-
ded’ street recordings. The selected frequency bin k corresponds to
≈ 2650Hz. The dots are colored according to pSPP (k, l), which has
been calculated from the PSDs of the speech and noise ground truth
available for the simulated data of CHiME4, i.e.

pSPP,true =
Tr{ΦSS}

Tr{ΦSS + ΦNN}
. (15)

Using PCA to visualize the first three principal components
of vZ,1 reveals an interesting structure. It can be seen that the
dominant eigenvectors form local clusters if speech is present (red
dots). During speech absence they are uniformly distributed over
the sphere (blue dots). This clustering indicates that the speaker is
indeed slowly moving, which will be exploited to estimate pSPP .

Fig. 1. 3D projection of vZ,1 for a single frequency bin over time.
The dots are colored according to pSPP,true.

4.2. Kernelized DNN

We use a DNN to learn pSPP from the dominant eigenvector vZ,1
of the PSD matrix ΦZZ of the noisy inputs. As we are operating
in the frequency domain, a separate kernel for each frequency bin

3An m-dimensional complex eigenvector has 2m−1 non-redundant real-
valued dimensons, as the eigenvector can be scaled by an arbitrary complex
constant so that one dimension collapses to zero.

k is required. To introduce some context-sensitivity into our model,
we do not use vZ,1(k, l) directly as feature vector, but calculate the
cosine distance4 xi,k between the current eigenvector vZ,1(k, l) at
time frame l and the ith most recent frame, i.e.

xi,k = Re
{
vZ,1(k, l)HvZ,1(k, l − i)

}
. (16)

This enables the DNN to exploit the temporal information em-
bedded in the signal. xi,k is stacked to produce a feature vector
xk per kernel k, so that a feature vector covering ∆ consecutive
frames consists of xk =

[
x1,k, x2,k, · · · , x∆,k

]
. Note that (16)

effectively eliminates the number of microphones from the feature
vector. Hence, we can apply the same DNN structure to a wide range
of multi-channel speech enhancement tasks.

The DNN of each kernel uses a hybrid model with a generative
and a discriminative component [2]. The generative component con-
sists of two autoencoder layers, which perform unsupervised clus-
tering of the input data xk. The autoencoder kernels operate inde-
pendently for each frequency bin. We varied the number of hidden
layers and the number of neurons per layer in our experiments, and
heuristically determined that 2 hidden layers comprising 20 and 10
neurons are a good compromise between clustering performance and
computational complexity. The discriminative component consists
of a regression layer which fuses the activations of all autoencoder
kernels, in order to exploit information which is distributed across
the frequency. The regression layer predicts the K output labels
pSPP (xk)). Figure 2 illustrates the kernelized DNN used in our
system. Note that we could also use a (bidirectional) long short term
memory (B-LSTM), but our kernelized DNN has the advantage of
an efficient implementation, and it is easy to train.

Fig. 2. Kernelized DNN with feature vector xk and output predic-
tions pSPP (xk).

4.3. DNN training

We use greedy layer-wise pretraining for the autoencoder kernels
[23], and discriminative fine-tuning for the softmax-layer using the
true label pSPP,true from (15). Optimization is done using stochastic
gradient descent with ADAM [24]. The autoencoder uses the KL-
divergence and weight decay to enforce a sparse representation of
the inputs xk. The softmax layer uses the cross entropy between the
true and predicted speech presence probability as cost function.

5. RESULTS

We trained our kernelized DNN using the 6-channel training data
of the CHiME4 corpus [10], for which the ground truth pSPP,true is

4Note that the eigenvector is already normalized to 1, i.e.

||vZ,1(k, l)||22
!
= 1
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available. The training set comprises 1600 real and 7138 simulated
utterances. Then we applied the DNN to the entire 2 and 6-channel
corpus consisting of 14658 utterances, which translates roughly into
28 hours of audio data. The DNN outputs the speech presence proba-
bility pSPP , which we use to construct the EV-GSC beamformer and
postfilter as described in Section 3. For more details on the CHiME4
data the interested reader is refered to [10].

5.1. Speech Mask Accuracy

Figure 3 shows the performance of the DNN for a single utterance
from the evaluation set (M04 420C020M CAF). Panel (a) shows
xi=1,k from the feature vector for the DNN, (b) shows the true label
calculated with (15), and (c) shows the prediction for pSPP obtained
from the softmax regression layer.

Fig. 3. Speech presence probability mask prediction.

We observe that xi=1,k already shows a high similarity to the
true speech presence probability, except for low frequencies and
some noise. Due to the fully connected softmax layer, the noise
can be almost completely removed, and the prediction accuracy is
also good for low frequencies. Table 1 reports the prediction error
for pSPP 5 for the 2 and 6 channel data of CHiME4 [10], and various
feature vector lengths ∆. Using a feature vector with more than 5
consecutive frames gives no significant performance improvement,
hence we select ∆ = 5 to be a reasonable trade-off between accu-
racy and computational complexity.

Scenario Train Dev Eval
2ch, ∆ = 3 15.46 15.85 16.58
2ch, ∆ = 5 15.08 15.61 16.17
2ch, ∆ = 7 14.89 15.32 16.02
6ch, ∆ = 3 11.16 11.69 12.24
6ch, ∆ = 5 10.74 11.41 11.85
6ch, ∆ = 7 10.55 11.28 11.74

Table 1. Prediction error for pSPP in %.

5The prediction error is the average over all time-frequency bins of
|pSPP − pSPP,true|.

5.2. Perceptual Speech Quality

With the predicted speech mask pSPP , we construct the EV-GSC
beamformer from Section 3.1. We use the Perceptual Evaluation
methods for Audio Source Separation (PEASS) Toolkit [25, 26] to
evaluate the performance of our multi-channel speech enhancement
system, and report the Overall Perceptual Score (OPS) and PESQ
[27] values. Tables 2 and 3 give a comparison of our system (EV-
GSC) against the CHiME4-baseline enhancement system using the
BeamformIt-toolkit [10], our GSC with steering vector estimation
and an adaptive blocking matrix (ABM) [7], and the front-end of the
best CHiME3 system [11], which uses a complex gaussian mixture
model (CGMM-EM) to estimate the speech and noise PSD matrices.
The model parameters are estimated with an EM algorithm, and the
posterior probability is used as speech presence probability.

It can be seen that our approach (EV-GSC) outperforms the
CHiME4 baseline, the GSC with ABM, and the CGMM-EM sys-
tems in terms of PESQ and OPS on the simulated (simu) and real
(real) data set for 6-channels (6ch). Even in the 2-channel case
(2ch) we obtain competitive results. In this case, the two channels
are randomly selected from the 6-channels, i.e. the array geometry
changes randomly.

Method Data set Train Dev Eval
CHiME4 baseline simu 1.35 1.31 1.26
(BeamformIt), 5ch [10] real 1.35 1.28 1.37
GSC with ABM and simu 1.98 1.69 1.63
and postfilter, 6ch [7] real 1.51 1.39 1.44
CGMM-EM with MVDR simu 1.79 1.59 1.51
and postfilter, 6ch [11] real 1.53 1.41 1.44
EV-GSC and postfilter, simu 2.04 1.89 1.86
6ch, ∆ = 5 real 1.72 1.74 1.63
EV-GSC and postfilter, simu 1.68 1.61 1.58
2ch, ∆ = 5 real 1.55 1.43 1.54

Table 2. PESQ scores.

Method Data set Train Dev Eval
CHiME4 baseline simu 33.11 34.73 31.46
(BeamformIt), 5ch [10] real 29.97 36.45 36.74
GSC with ABM and simu 56.08 44.82 44.48
and postfilter, 6ch [7] real 47.18 44.90 36.96
CGMM-EM with MVDR simu 52.15 43.02 40.59
and postfilter, 6ch [11] real 44.95 41.89 36.87
EV-GSC and postfilter, simu 59.09 48.32 48.64
6ch, ∆ = 5 real 52.34 46.09 44.16
EV-GSC and postfilter, simu 47.32 40.97 40.75
2ch, ∆ = 5 real 43.43 42.83 39.82

Table 3. OPS scores.

6. CONCLUSION AND FUTURE WORK

In this paper, we have shown the importance of the speech pres-
ence probability mask, which is used to construct an optimal multi-
channel Wiener filter followed by a single-channel postfilter. Fur-
ther, we presented a kernelized DNN to estimate this speech pres-
ence probability mask. To prevent the DNN from learning specific
speaker and noise types, we used the cosine distance between the
dominant eigenvectors of consecutive frames of the PSD of the noisy
speech as input feature. Finally, we compared our system against
three state-of-the-art approaches, and evaluate the perceptual speech
quality and classification error. Future work includes a in-depth eval-
uation of the DNN being used and performance comparison against
B-LSTMs. Furthermore, the relationship between the eigenvectors
and the speech presence probability mask is investigated.
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