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ABSTRACT

In live and studio recordings unexpected sound events often lead
to interferences in the signal. For non-stationary interferences, sound
source separation techniques can be used to reduce the interference
level in the recording. In this context, we present a novel approach
combining the strengths of two algorithmic families: NMF and KAM.
The recent KAM approach applies robust statistics on frames selected
by a source-specific kernel to perform source separation. Based
on semi-supervised NMF, we extend this approach in two ways.
First, we locate the interference in the recording based on detected
NMF activity. Second, we improve the kernel-based frame selection
by incorporating an NMF-based estimate of the clean music signal.
Further, we introduce a temporal context in the kernel, taking some
musical structure into account. Our experiments show improved
separation quality for our proposed method over a state-of-the-art
approach for interference reduction.

Index Terms— Source separation, Kernel Additive Modelling,
Non-Negative Matrix Factorization, Interference Reduction.

1. INTRODUCTION

In professional music recordings one often has to deal with various
types of sound interferences. For example, a person in the audience
experiencing a coughing fit during a classical music concert can
be a major disturbance. Similarly, fans screaming too close to one
of the stage microphones can render the entire channel useless in
post-production. Further, studio sessions are often subject to strict
time budgets and thus many tracks are only recorded until the sound
engineer assesses the last take to be good enough – only to find a
door being slammed or an object falling on the floor in this one good
take during the actual production.

The difficulty of removing such an interference strongly depends
on its type. Stationary interferences, such as mains or fluorescent light
hum, can often already be reduced by simple (Wiener) filtering tech-
niques [1]. Non-stationary interferences such as the ones described
above, however, require more complex signal models and sound
source separation techniques to differentiate noise from non-noise
signal components. In this context, Non-Negative Matrix Factoriza-
tion (NMF) proves to be a powerful tool and most state-of-the-art
source separation methods are based on NMF variants [2]. The basic
idea behind NMF is to model a time-frequency representation of the
signal as a product of two matrices. The columns of the first matrix
are often interpreted as templates capturing the spectral properties of
the individual sound sources in the signal; the rows of the second ma-
trix are often referred to as the corresponding activations, encoding
when and how strong each template is active in the input signal.

This work was funded by EPSRC grant EP/L019981/1.

Applying the original NMF approach [3] to audio and music
data, however, was found to rarely yield useful results [4]. Therefore,
various extensions were proposed integrating various constraints on
the parameter estimation process. Examples include sparsity and
temporal continuity constraints [5] or harmonicity constraints [6].
Further, various types of side information have been used, such as
user-assisted annotations [7] and musical score information [8]. One
of the most widely used and successful approaches is to employ
training data (Supervised NMF): using recordings containing only
a single sound source, corresponding templates representing that
source can easily be computed [9]. This way, one can avoid relying
on specific assumptions about the statistical independence of the
sources [10]. As a major drawback of this approach, however, the
quality of the separation result heavily depends on the assumption that
the acoustical conditions in the training material and in the recording
to be processed are similar. The more this assumption is violated, the
more artefacts are to be expected.

As an alternative to NMF, Kernel Additive Modelling (KAM) [11]
was proposed for various tasks in source separation, e.g. singing voice
separation [12,13], the separation of harmonic from percussive signal
components [14] or the reduction of microphone bleeding in multi-
channel recordings [15]. In general, the idea behind KAM is to exploit
that the magnitude of a bin in a time-frequency representation is often
similar or related to the magnitude of certain other bins – which bins
are similar is described by a so called kernel. If the magnitude of
a given bin deviates in an unexpected way from the bins defined in
the kernel, one can assume that this bin is overlaid by another sound
source and we can use the kernel bins to reconstruct the overlaid
one. Since some of the kernel bins might be overlaid by other sounds
as well, or are not exact repetitions, one uses Robust Statistics, in
particular order statistics, to identify the commonalities between the
bins while neglecting the outliers.

To apply a KAM-based method to a source separation problem,
one needs to design a corresponding kernel that identifies similar
spectral bins for the sources we want to keep while ignoring the en-
ergy associated with other sources. In existing KAM approaches, this
kernel design is often rather rudimentary. For example, to eliminate
the singing voice from recordings, the methods proposed in [12, 13]
assume that the accompaniment playing the harmony changes more
slowly than the singing voice and thus that there are many frames
with similar accompaniment. The kernel used in [12, 13] is simply a
function finding the K most similar frames based on the Euclidean
distance. However, using such simple kernels one implicitly assumes
that the energy in frames will be dominated by the sound source
we want to keep – otherwise the similarity measure fails to identify
similar frames. Therefore, while standard KAM is free of the need
for suitable training data as in supervised NMF, it might fail to find
similar frames if the signal-to-interference ratio is low. In particular,
with sudden, loud interferences as to be expected in our application
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scenario, existing KAM approaches are likely to fail.
Our main idea is to combine the strengths of both approaches. In

particular, while training data in supervised NMF might not be pre-
cise enough to yield a high quality signal model as needed for source
separation, it might be discriminative enough to obtain an initial
signal model for the music, which can be used to design an adap-
tive, interference-resilient kernel for KAM. More precisely, we let
the user provide keywords to describe the interference (e.g.‘cough’)
and retrieve corresponding training data from the publicly available
freesound1 archive. After computing templates specific for the in-
terference from the training data, we apply a semi-supervised NMF,
i.e. we fix templates for the interference and learn some additional
free templates to model the music from the actual input signal. Then,
using the (HMM-smoothed) NMF activations for the fixed interfer-
ence templates, we automatically locate the interference within the
recording – this way, in contrast to existing KAM approaches, we
can filter the signal only where needed. Second, using the activations
for the free templates, we can reconstruct an initial rough estimate
for the music, where the interference is strongly reduced as most
of the corresponding energy is already captured by the interference
templates. Based on this initial model, we identify for each frame
affected by the interference a list of similar frames, which are then
used within the KAM framework to produce the final output. As ad-
ditional contributions, we modify the standard kernels used in KAM
by incorporating a temporal context into the similarity search which
essentially yields a simple regularizer promoting temporal continu-
ity of the kernels across frames, as well as a smoothing technique,
which enhances the method’s invariance against small variations in
the fundamental frequency.

The remainder of the paper is organized as follows. In Section 2
we describe the technical details of our approach. Next, in Section 3
we compare our proposed method with standard KAM and semi-
supervised NMF in a series of systematic experiments. Finally, we
conclude the paper in Section 4 with an outlook on future work.

2. PROPOSED METHOD

Overall, we develop our method as an extension to Kernel Additive
Modelling (KAM) [11]. From a modelling point of view, KAM and the
more widely known Gaussian Processes (GP) share similar concepts.
In both cases, the idea is that for many signals we can estimate the
value of a single sample by looking at the value of neighbouring
samples. For example, a low frequency signal corrupted by white
noise can be reconstructed by averging the values of neighbouring
samples. This operation is essentially similar to a low-pass FIR
filter, just that KAM and GP enable the use of much more general
notions of similarity or neighbourhood. KAM differs from GP in
several aspects. First, the similarity kernel in KAM can depend on
the observations themselves [16], which we exploit in the following.
Second, non-Gaussian noise corrupting the sample values can be
modelled. Third, as an instance of kernel local regression, KAM
does not require the inversion of a data covariance matrix (as in
GPs), which typically leads to considerable improvement in terms of
computational costs [11].

The KAM framework as a whole is relatively rich, both in pos-
sible application scenarios and theory. Due to space constraints, we
will only present a smaller subset that was also used in a similar form
in the REPET family of methods for singing voice removal [13]. To
this end let x be the signal to be processed with x(t) = s(t) + n(t),
where s and n are the clean music and the interference signal, re-
spectively. Further, let X,S ∈ CF×T be the spectrograms of x and

1https://www.freesound.org/

Fig. 1. Individual steps in our proposed method, (a)-(d) using stan-
dard KAM, (e)-(h) using our proposed extension: (a,e) current frame
used for similarity search, (b,f) first 10 closest frames found, (c,g)
estimated frame and (d,h) ideal clean frame.

s. In the following, we exploit that spectral frames in S typically
occur several times in similar form, either because note constellations
are repeated over time (as is common in music) or because notes are
being held for a while. The interference on the other hand may or
may not be repetitive and thus we cannot make any assumptions here.
Therefore, we will model only s in KAM without considering the
interference n as an actual sound source but just as noise with an un-
known distribution. Since s only consists of a single channel, we can
eliminate many unnecessary elements in KAM (multi-channel and
iterative re-estimation extensions, compare [11]), resulting in a very
simple representation. More precisely, let I : F×T → P(F×T ) be
a similarity kernel function that assigns to every time-frequency bin
(f, t) a list of K similar bins, i.e.∀(f, t) ∈ F × T : |I(t, f)| = K.
As in the case of REPET, we use a frame-wise, K-nearest neighbours
(K-NN) function based on the Euclidean distance, i.e. (f, t̃) is in
I(f, t) if frame t̃ is among the K most similar frames. This process
is illustrated in Fig. 1, where for a given frame shown in Fig. 1a the
K = 10 most similar frames are shown in Fig. 1b.

Once this notion of similarity between bins is established, we can
try to calculate a noise-free estimate for each bin (f, t) from the bins
in I(f, t). In KAM [11] this goal is expressed as an optimization
problem over so called model cost functions L. More precisely, we
get2:

S(f, t) = argmin
λ∈R

∑
(f,t̃)∈I(f,t)

L(X(f, t̃), λ),

where X is the magnitude of X . Here L models our belief regarding
how good or bad a specific choice for S(f, t) is, considering that we
call all elements in I(f, t) similar to it. A common choice in the
KAM framework is L(a, b) := |a − b|. This choice is interesting

2Note that the formal requirement to have noisy data extracts for S (as
used in KAM) are directly given here as X(f, t̃). This is the result of having
only a single sound source in a single channel, which makes the iterative
re-estimation in KAM unnecessary and eliminates all elements related to the
estimation of the mixing matrix, compare [11].
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for two reasons. First, it expresses from a probabilistic point of view
that we expect some larger deviations in the difference a and b, and
that this distance is not Gaussian distributed (otherwise a Euclidean
distance would be optimal here). Second, this choice leads us to the
use of robust statistics in the form of the median, which as an operator
is invariant against outliers (breakdown point is 50%) and thus allows
robust parameter estimation in the presence of noise. More precisely,
with L(a, b) := |a− b| the solution to the above problem is:

S(f, t) = median(X(f, t̃)|(f, t̃) ∈ I(f, t)).

The result is shown in Fig. 1c.
Comparing the results of this approach shown in Fig. 1c with

the clean signal in Fig. 1d, we can observe an example of when this
approach fails. In particular, comparing Fig. 1a and Fig. 1d, we
see that the input frame is overlaid by a strong interference. With
such a low signal-to-noise ratio (SNR), the interference dominates in
the similarity search based on the Euclidean distance and the kernel
function I(f, t) points to too many noisy examples, which even
the median operation cannot eliminate. In particular, despite being
strongly invariant against outliers from a robust statistics point of
view, the outliers cannot be identified anymore based on a selection
of frames as shown in Fig. 1c.

Our idea is now to improve the K-NN search in KAM in sev-
eral ways, making the kernel function more invariant against the
interference signal. To this end, we build a first initial signal model
based on NMF using training data. While the training data might
differ from the actual interference signal, and thus an actual source
separation based on this method would yield results of low quality, it
might be good enough to gather more information about the signal
and reduce the influence of the interference. More precisely, similar
to [17] we let the user provide keywords to describe the interference
(e.g.‘cough’) and retrieve corresponding example recordings from
the freesound archive. Concatenating these recordings into a single
file, we compute its magnitude spectrogram XN as well as an NMF
factorization XN ≈WNH using the well-known Lee-Seung NMF
updates for the generalized Kullback-Leibler divergence DKL [3], i.e.
we minimize DKL(XN ,WNH) over non-negative matrices WN and
H . The only parameter here is the NMF rank R1. After this, the
columns of WN contains templates reflecting the spectral properties
of the interference signal.

In a next step, we employ NMF to model our input spectrogram
X using a combination of interference templates, WN , and music
templates,WS . Here, the interference templates can be kept fixed and
we only need to learn the music templates, which is often referred to
as semi-supervised NMF. More precisely, we minimize the function
DKL(X,WNHN+WSHS) overHN ,WS andHS (i.e. we fixWN ).
In this case, the update rules are similar to regular NMF:

HN ← HN �
W>NR
W>N · J

and HS ← HS �
W>S R
W>S · J

,

WS ←WS �
RH>S
J ·H>S

, with R :=
X

WNHN +WSHS

and J the all-one matrix. After convergence, the rows of HN capture
the activations of the interference templates, while WSHS yields an
approximation of the magnitude spectrogram for the music. Using
these two interpretations, we employ these results for two different
purposes. First, we use HN to identify where the interference is,
which will enable us to filter only frames with interference (in con-
trast to regular KAM). To this end, we sum the values in HN in
each frame to obtain a single curve indicating interference activity,
which we decode using an HMM, resulting in a binary, frame-wise

interference indicator vector I . The parameters of the HMM imple-
mented, detection threshold and cost of changing state, were adjusted
to favour recall over precision in the detection.

Next, we exploit that while the interference templates might not
perfectly reflect the properties of the target interference (and thus
a separation based on this model would be of low quality), they do
capture typically a considerable amount of interference energy in the
signal. Therefore, we can improve the K-NN search in KAM kernel
by replacing the input spectrogramX containing the interference with
the NMF approximation for the music X̃ :=WSHS . The resulting
improvement is clearly visible in Fig. 1. Replacing the X-frame
(Fig. 1a) with the corresponding X̃-frame (Fig. 1e) in the similarity
search, we see that the frames selected as nearest neighbours (Fig. 1f)
are much closer to the actual target (Fig. 1d = Fig. 1h). The median
filter can then remove remaining noise robustly, bringing the result
(Fig. 1g) much closer to the target (Fig. 1h).

However, in particular if musical patterns are rarely or not re-
peated in the mixture, we observed that sometimes the frames selected
as nearest neighbours using X̃ still contained a significant amount
of interference energy, again potentially rendering the median fil-
tering ineffective. As a further extension, we therefore propose to
check if a frame selected as nearest neighbour was previously already
identified as an interference frame and, in that case, use the corre-
sponding X̃-frame for the median filtering instead of the X-frame.
As it is shown in Section 3, this extension additionally reduces the
interference impact on the separation result.

A further problem we observed is that the kernel I was of-
ten changing considerably between frames in the sense that often
(f, t̃) ∈ I(f, t) would not imply (f, t̃ + 1) ∈ I(f, t + 1). With-
out this property, however, we observed a slight pitch jitter in the
magnitude across frames after median filtering, which was audible
in the final time domain signal. To further temporally stabilize the
kernel function, we propose incorporating a temporal context into the
similarity search. More precisely, instead of comparing frames t and t̃
with a simple squared Euclidean distance

∑
f (X̃(f, t)− X̃(f, t̃))2,

we employ ∑
f

C∑
c=−C

(X̃(f, t+ c)− X̃(f, t̃+ c))2

as frame distance in the K-NN search, where C specifies the tempo-
ral extent. We found this simple extension to act as a surprisingly
effective temporal regularizer for I. Further, we found that filtering
X̃ slightly in frequency direction before the K-NN search using a
small Gaussian kernel additionally improved the results, as it makes
the similarity search invariant to small changes in the fundamental
frequency of harmonic sounds.

To perform the actual separation, we employ soft masking (simi-
lar to Wiener filtering). In particular, our method yields an estimate S
for the magnitude spectrogram of the music. We define a correspond-
ing estimate for the noise, here interference, asN = max(X−S, 0).
This way, we can obtain an estimate S for the complex music spectro-
gram via S = S

N+S
�X . Overall, we found our method combining

NMF and KAM to improve over both approaches considerably, which
we demonstrate in the next section.

3. EXPERIMENTS

We evaluated our proposed method using freely available recordings,
in particular interferences and instrumental solo stems from multi-
track recordings [18]. We chose interferences that typically occur in
a live or studio scenario including cough sounds, door slams, sounds
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NSDR NSIR

0dB −3dB −6dB 0dB −3dB −6dB

Prop. 6.78 4.76 2.52 16.79 15.30 13.69
NMF 4.76 3.16 1.13 13.15 14.40 15.62

Table 1. Comparison of our method with supervised NMF for differ-
ent SNR values.

of objects of different material being dropped, chair-drag sounds as
well as audience screams. The music dataset contains 58 instrumental
mono stems from the multitrack MedleyDB dataset [18], covering 23
different instruments ranging from guitar, violin, piano over to bass,
trombone or flute.

Similar to [17], we retrieved recordings of interferences from
freesound.org – this way, the method does not rely on the availability
of non-public training data and is easily extended to other types of
interferences. However, this also implies that the quality and number
of training samples can vary, and thus explains why, in our case,
each interference has a different amount of training data, ranging
from 10 scream samples to 40 coughs tracks. The separation quality
is expected to improve as the number of tracks in the training data
increases.

We created test recordings by making artificial linear mixes of
stems and test interference recordings independent of the training
data and of each other (other acoustic conditions). In order to achieve
a controlled mix of instrumental and interference levels, all tracks
were normalised to a specific RMS energy. Then three interferences
are added to the music at different SNR, measured on the segment
where the interference is active. The final mix is a 30s long monaural
recording with three different sounds of the same kind interfering at
different times at a certain SNR.

We evaluated the proposed method on the resulting 290 mixtures
(58 instrumental stems times 5 types of interferences), measuring the
separation performance using the BSS Eval toolbox [19], obtaining
a Signal-to-Distortion Ratio (SDR) and Signal-to-Interference Ratio
(SIR) for each mixture separation. The SDR is used as a measure to
indicate the overall separation performance, whereas the SIR shows
how much of the interference signal is left in the signal estimate. To
indicate the improvement over the raw music-interference mix, we
employ the normalized SDR/SIR (NSDR/NSIR) as in [20], i.e. from
the SDR obtained using our method we subtract the SDR from the
mix. This way, we can account for the fact that a separation at a low
SNR is more difficult than at a high SNR, making results for different
SNRs more comparable.

Here we have chosen supervised-NMF to represent the current
state-of-the-art method to quantitatively compare its separation per-
formance to the proposed method. In order to obtain a competitive
baseline, we use the same learned dictionary for both methods and
we also optimise the NMF rank with a parameter sweep. Tables 1
and 2 show the overall results, averaged across all NSDR/ NSIR
values of every mixture, for our proposed method as well as for the
semi-supervised NMF approach. Comparing the results, our pro-
posed method yields a higher separation quality than the NMF-based
method not only for a 0dB SNR mixture, but also for mixtures where
the interference is 3dB and 6dB below the instrumental RMS energy.
Overall, we obtain an improvement between 1.4 and 2.0dB, which
from a relative point of view is quite considerable.

In order to measure the influence of the individual components
of our proposed method, Table 1 shows results separately for several
variations of our method. To provide another angle on the results
and focus on the positions where the interferences actually happen,

NSDR NSIR

V1: Standard KAM + 7.09 13.62NMF Interference Detection
V2: V1 + NMF-based Kernel Similarity + 7.92 15.48Temporal Context
V3: V2 + Adaptive Frame Selection + 8.84 14.53Smoothing (Proposed Method)

Table 2. Influence of individual KAM extensions on the separation
result (interference at 0dB SNR; separation evaluated on the segments
affected by an interference).

we evaluated the separation performance by averaging across the
three segments in the mix where the interference is active, and so the
resulting NSDR scores are not directly comparable to Table 1.

Starting with a baseline KAM approach as described in [12],
Variant V1 adds the NMF interference detection step introduced in
Section 2. The high NSDR shows the interference was successfully
identified and reduced. Variant V2 further adds the improved similar-
ity measure of our proposed method, where similarity is measured
based on a rough NMF estimate of the signal. Additionally, the
frame-wise similarity search used in standard KAM (and Variant V1)
is modified to account for the local temporal context in V2 as intro-
duced in Section 2. The higher NSDR shows that the temporal context
stabilizes not only the kernel but also the results. In this context, it
is important to remark that our test signal are only 30 seconds long
– for longer signals with additional repetitions of musical patterns,
we would expect even higher improvements in NSDR. Overall, both
extensions improve the capability of our method to better identify
and select similar frames and thus to increase the performance of the
median filtering step.

Variant V3 is an extension of Variant V2 incorporating the smooth-
ing filter and the adaptive frame selection, which replaces frames in
the median filter in which an inferences was detected with the corre-
sponding frames from the NMF estimate, see Section 2. As shown
in Table 2, both extensions further improve the NSDR over variant
Variant V2. However, the NSIR values are sometimes lower – in our
experiments, we found this to be a side effect of the smoothing filter,
which slightly blurs the spectrum, leading to a tendency of leaving
more residual energy in the output. However, overall, these results
show that each of our proposed extensions measurably improves the
separation quality.

4. CONCLUSION

We have presented a new method for interference reduction com-
bining NMF and KAM. Our method exploits advantages of both
techniques: using a spectral dictionary we detect the interference
occurrences and produce an initial clean signal estimate using NMF.
This estimate is used to improve the similarity measure used in KAM,
making it less dependent on the SNR of the interference. A further
extension incorporates a temporal context into the similarity search,
which stabilized the KAM kernel function and further improved the
separation results. Finally, an adaptive frame selection mechanism re-
placing frames with interferences with corresponding NMF-estimates
in the median filter led to an additional improvement, in particular for
short recordings. For solo instrumental recordings, our experiments
showed a considerable improvement in separation quality for our
proposed method over a competitive method based on supervised
NMF. Possible future directions for extending this work would in-
clude an improved similarity search as well as the implementation of
source-specific kernels both in time and frequency direction.
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