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ABSTRACT

We present a probabilistic model for joint source separation
and diarisation of multichannel convolutive speech mixtures.
We build upon the framework of local Gaussian model (LGM)
with non-negative matrix factorization (NMF). The diarisa-
tion is introduced as a temporal labeling of each source in the
mix as active or inactive at the short-term frame level. We
devise an EM algorithm in which the source separation pro-
cess is aided by the diarisation state, since the latter indicates
the sources actually present in the mixture. The diarisation
state is tracked with a Hidden Markov Model (HMM) with
emission probabilities calculated from the estimated source
signals. The proposed EM has separation performance com-
parable with a state-of-the-art LGM NMF method, while out-
performing a state-of-the-art speaker diarisation pipeline.

Index Terms— Audio source separation, speaker diarisa-
tion, local Gaussian model.

1. INTRODUCTION

Multichannel audio source separation (MASS) aims at recov-
ering unobserved source signals from observed mixtures [1].
MASS is mainly concerned with mixtures of speech, music,
and ambient noise. Speaker diarisation is the segmentation
and labelling of an audio signal emitted during multi-party
conversations [2, 3]. In short, speaker diarisation is answer-
ing to the question “who is talking, and when?” while MASS
tries to recover the emitted signals. Both processes are crucial
front-ends for higher-level processes such as speech recogni-
tion, human-computer or human-robot interaction.

There has been extensive research addressing indepen-
dently either MASS [4, 5, 6, 7], or speaker diarisation [2, 3]
tasks. Currently, most of MASS methods implicitly assume
all sources as continuously emitting. Besides, state-of-the-
art methods on diarisation, e.g. [8] consists of a pipeline
that starts by extracting features from the audio mixture,
e.g. Mel frequency cepstral coefficients, and proceeds with
speech/non-speech segmentation of the audio stream, and
clustering of the speech segments into associated speakers.

This research has received funding from the EU-FP7 STREP project
EARS (#609465) and ERC Advanced Grant VHIA (#340113).

Obviously, the two tasks are highly inter-related. Indeed,
knowing the separated sources of an audio mixture helps as-
sessing when each source is active/inactive. On the other
hand, knowing the diarisation of the sources within the mix-
ture determines how many sources need to be separated and
when. Therefore, a joint formulation of MASS and diarisa-
tion can be beneficial for both problems. Except for a series
of Higuchi et. al. [9, 10, 11], a framework addressing jointly
the two problems seems overlooked in the literature; in [9, 10]
the active/inactive state of a source is independently modeled
with a factorial HMM in a MASS framework. This inde-
pendent modeling of the activity of a source with respect to
the activity of the other sources may be unrealistic for multi-
party conversations. In [10] the source activity detection is
combined with a direction-of-arrival-dependent HMM for the
propagation model. A variational expectation maximization
(EM) is presented that infers the sources, their activity and the
model parameters, although under the assumption of a single
active source per time-frequency bin.

In this paper we propose a probabilistic model for simulta-
neous diarisation and separation for multichannel audio mix-
tures that enjoys the following merits: We consider all possi-
ble combinations of simultaneous active sources and process
them jointly, as the overall state of diarisation. An EM algo-
rithm is designed for model parameter estimation. We com-
pare the performance of the proposed EM with [5] in terms of
separation, and with [8] in terms of diarisation.

The proposed model is presented in Section 2. The EM
algorithm that estimates the parameters and that infers the
source signals and the diarisation is presented in Section 3.
Experimental evaluation reported in Section 4 shows compet-
itive performance on both source separation and diarisation.

2. MODELS

2.1. Audio Mixtures with Diarisation

As in many source separation methods, the observed signal is
modeled as a multichannel time-invariant convolutive noisy
mixture of the source signals. We work with the short time
Fourier transform (STFT) representation of the input audio,
where xf` = [x1,f` . . . xI,f`]

> ∈ CI is the I-channel vector
of Fourier coefficients at frequency bin f ∈ [1, F ] and time
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frame ` ∈ [1, L]. Relying on the narrow-band assumption,
i.e. the channel impulse response is shorter than the STFT
analysis window, xf` writes [12]: xf` = Afsf`+bf`, where
sf` = [s1,f` . . . sJ,f`]

> ∈ CJ is the latent vector of source
coefficients, Af ∈ CI×J is the mixing matrix, and bf` ∈ CI

is residual noise. In the present study we want to express
xf` with a formulation that explicitly encodes the activity of
the sources, in a binary manner; we have N = 2J possible
combinations, or “states”, for source activity. Let us represent
a state n ∈ [1, N ] with a [J × J ] diagonal matrix Dn with jth

entry Djj,n set to:

Djj,n =

{
1, if the jth source is active at state n
0, otherwise.

(1)

For example, with J = 2, the N = 4 possible matrices are:

D1 =
[
0
0

]
,D2 =

[
0
1

]
,D3 =

[
1
0

]
,D4 =

[
1
1

]
. (2)

Incorporating Dn we rewrite xf` as:

xf` =

J∑
j=1

Djj,naj,fsj,f` + bf` = AfDnsf` + bf`, (3)

with aj,f ∈ CI the jth column of Af . By choosing the matrix
Dn for a frame `, we select which of the J sources compose
the mixture at that frame, as Dn zeroes out inactive sources.

2.2. Selecting the Diarisation

The activity of each sound source varies over time, hence the
state is to be estimated for each frame `. For this we define a
latent categorical variable Z` = n, n ∈ [1, N ] indicating the
state at `-th frame. The Z` follows a first-order HMM with:

p(Z1 = n) = λn, p(Z` = n|Z`−1 = r) = Tnr, (4)

with λn, Tnr ∈ R+, n, r ∈ [1, N ] being the prior and tran-
sition parameters to be estimated. Let us assume that bf`

follows a zero-mean proper complex-Gaussian distribution1.
We can now express the mixture of (3) probabilistically:

p(xf`|sf`, Z` = n) = Nc (xf`; AfDnsf`, vfII) , (5)

with Af and vf ∈ R+ parameters to be estimated and II is
the identity matrix of dimension I .

2.3. The Source Model

Let {Kj}Jj=1 denote a non-trivial partition of {1 . . .K}, with
K ≥ J the number of latent components that is known in

1The proper complex Gaussian distribution is defined asNc(x;µ,Σ) =
|πΣ|−1 exp

(
− [x− µ]HΣ−1[x− µ]

)
, with x,µ ∈ CI and Σ ∈ CI×I

being the argument, mean vector, and covariance matrix respectively [13].

advance. Following [5, 14, 15], sj,f` is modeled as the sum
of the latent components ck,f`, k ∈ Kj :

sj,f` =
∑
k∈Kj

ck,f` ⇔ sf` = Gcf`, (6)

where G ∈ NJ×K is a matrix with entries Gjk = 1 if k ∈ Kj

and Gjk = 0 otherwise, and cf` = [c1,f`, . . . , cK,f`]
> ∈

CK is the vector of component coefficients. Each component
ck,f` follows a zero-mean proper complex Gaussian distribu-
tion with variance wfkhk`, and wfk, hk` ∈ R+ parameters
to be estimated. The components are assumed to be mutually
independent and individually independent across frequencies
and over time; the probability density function (pdf) of the
component vector therefore is:

p(cf`) = Nc

(
cf`; 0K , diagK (wfkhk`)

)
, (7)

with 0K the zero-vector of dimension K and diagK(dk) the
K ×K diagonal matrix with respective entries {dk}Kk=1. Eq.
(7) corresponds to a non-negative matrix factorization (NMF)
model placed on the F × L matrix of variances of the source
coefficients; a now common practice in audio signal process-
ing, e.g. [16, 17, 18].

3. EM FOR SEPARATION AND DIARISATION

We derived an EM algorithm to infer the hidden variables
H = {cf`, sf`, Z`}F,L

f,`=1 and estimate the parameters θ =

{Af , vf , Tnr, λn, wfk, hk`}F,L,K,N,N
f,`,k,n,r=1 . The E-step and M-

step are given below. The complete EM is given in Algorithm1.
The iteration index is omitted for clarity.

3.1. E-step

The E-step consists of computing the joint posterior prob-
ability: p(cf`, Z` = n|{xf`}F,L

f,`=1). This is done by first
computing the posterior over the component coefficients:
p(cf`|Z` = n, {xf`}F,L

f,`=1) and then computing the posterior
over the states: η`n = p(Z` = n|{xf`}F,L

f,`=1). After a few
manipulations, it turns out that for every state n ∈ [1, N ] we
obtain a different complex Gaussian pdf for the components:

p
(
cf`|Z` = n, {xf`}F,L

f,`=1

)
∝ p(cf`)p(xf`|cf`, Z` = n)

= Nc

(
cf`; ĉf`n,Σ

c
f`n

)
, (8)

with ĉf`n ∈ CK and Σc
f`n ∈ CK×K given by:

Σc
f`n =

[
diagK

(
1

wfkhk`

)
+ G>Dn

AH
fAf

vf
DnG

]−1
,

ĉf`n =Σc
f`nG>DnAH

f

xf`

vf
. (9)
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From (6), we easily deduce that the source posterior distribu-
tion is a complex Gaussian with mean vector ŝf`n ∈ CJ , and
covariance matrix Σs

f`n ∈ CJ×J calculated with:

ŝf`n = Gĉf`n, Σs
f`n = GΣc

f`nG>. (10)

From (4), the posterior probability η`n of the nth state is cal-
culated by decoding a first-order HMM (using the forward-
backward algorithm [19]), with emission probabilities ι`n =
p({xf`}F,L

f,`=1|Z` = n) given by:

ι`n ∝ exp

 F∑
f=1

[
log
∣∣Σs

f`n

∣∣+
xf`

H

vf
AfDnŝf`n

] , (11)

with |.| the matrix determinant. Then we run the forward and
backward recursions to compute the probabilities φ`n, β`n:

φ`n ∝ ι`n
N∑
r=1

Tnrφ(`−1)r, (12)

β`n ∝
N∑
r=1

Trnι(`+1)rβ(`+1)r. (13)

Multiplying φ`n with β`n and normalizing, we obtain:

η`n ∝ φ`nβ`n. (14)

The recursions require initialization of φ1n and βLn. We ob-
served faster convergence by, at each EM iteration, setting
φ1n = ι1nλn, running the forward recursion, and then setting
βLn = φLn to initialize the backward recursion.

3.2. M-step

In the M step, the parameters maximizing the expected
complete-data log-likelihood are computed.

M-wfk, hk` step: The parameters wfk and hk` are cou-
pled in the objective function and an alternation strategy is
required, i.e. fixing one parameter to estimate the other. Sim-
ilar to [5, 14] the updates for wfk and hk` are:

wfk =
1

L

L∑
`=1

uk,f`
hk`

, hk` =
1

F

F∑
f=1

uk,f`
wfk

, (15)

with uk,f` ∈ R+ being here the posterior PSD of ck,f` aver-
aged with the posterior probability of the states:

uk,f` =

N∑
n=1

η`n
(
Σc

kk,f`n + |ĉk,f`n|2
)
, (16)

with Σc
kk,f`n ∈ R+ being the kth diagonal entry of Σc

f`n and
ĉk,f`n ∈ C being the kth entry of ĉf`n.

Algorithm 1 Separation & diarisation of J sound sources

input {xf`}F,L
f,`=1, binary matrix G, initial parameters θ.

construct: The 2J matrices Dn, n ∈ [1, 2J ] with (2).
repeat

E step C: Compute Σc
f`n and ĉf`n with (9).

E step S: Compute Σs
f`n, ŝf`n with (10).

E step Z: Compute ι`n with (11), set φ1n = λnι1n,
for ` : 2 to L. Compute φ`n with (12). end.
Set βLn = φLn.
for ` : L− 1 to 1. Compute β`n with (13). end.
Compute η`n with (14).

M-wfk, hk` step: Update wfk, and then hk`, with (15).
M-Tnr, λn step: Update ξ`,nr, then Tnr, λn, with (17).
M-Af step: Compute of`,Rf` with (18), Af with (19).
M-vf step: Update vf with (20).

until convergence
return The source images, the diarisation Dn̂`

∀`.

M-Tnr, λn step: Classically, for the HMM parameters,
we calculate ξ`,nr = p(Z` = n,Z`−1 = r|{xf`}F,L

f,`=1) and
then update Tnr and λn with:

ξ`,nr ∝ β(`+1)nι(`+1)nTnrφ`r,

Tnr ∝
L−1∑
`=1

ξ`,nr, λn = η1n. (17)

M-Af step: As the mixing matrix is common for all di-
arisation states, we need to first define the “final” source esti-
mate of` ∈ CJ , i.e. average source estimate over the states,
and the corresponding second-order statistic Rf` ∈ CJ×J :

of` =

N∑
n=1

η`nDnŝf`n,

Rf` =

N∑
n=1

η`nDn

(
Σs

f`n + ŝf`nŝH
f`n

)
Dn. (18)

Then the optimal value for Af is:

Af =

(
L∑

`=1

xf`o
H
f`

)(
L∑

`=1

Rf`

)−1
, (19)

which is a standard form of least square estimator [5].
M-vf step: The optimal noise variance is:

vf =
1

LI

L∑
`=1

(
xH
f`xf` − 2Re

{
xH
f`Afof`

}
+

tr
{
AfRf`A

H
f

})
. (20)

where tr{.} denotes the trace and Re{.} denotes the real part.
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3.3. Estimation of Separated Sources and Diarisation

The separation performance is assessed with the time domain
source images, i.e. the multichannel source signals at all mi-
crophones [6, 20], estimated by applying the inverse STFT
with overlap-add on {oj,f`aj,f}F,L

f,`=1. The diarisation output
n̂` is given at each frame by selecting the higher value of η`n,
n ∈ [1, N ]. Then from Dn̂`

we have the active sources at `th

frame. Frames where η`1 is dominant are non-speech frames.

4. EVALUATION

To assess the performance of the proposed method, we simu-
lated the challenging task of separating and diarizing J = 3
sources from a convolutive stereo mixture (I = 2). Each
source signal was a 27s speech signal made by concatenat-
ing utterances chosen from the TIMIT database [21] (one dif-
ferent speaker for each source). As mixing filters, we used
binaural room impulse responses from [22] having RT60 ≈
0.68s. We generated two types of mixtures: Mix-DC where all
sources are emitting continuously. Mix-8 where each source
has balanced portions of speech and silence so that all N = 8
states appear.

MASS performance is assessed with the signal-to-dist-
ortion (SDR), signal-to-interference (SIR), and signal-to-
artefact (SAR) measures (in dB) [23]. Diarisation is assessed
with accuracy (Acc) defined as the percentage of frames for
which a source was correctly identified (as either active if ac-
tually active, or inactive if actually inactive). As baseline, we
used [5] for source separation and [8] for speaker diarisation.
Both baselines were provided with the correct number of
sources. Because [8] is designed for non-overlapping audio
streams, we considered each of the 2J source combinations as
a virtual speaker, and we translated the result of the clustering
over virtual speakers into clustering of individual sources (we
tested all possible associations and reported the one giving
the highest accuracy). Afterwards, we use a median filter on
the estimated label of each source to remove spikes.

The initialization of the parameters is crucial for EM. We
initialized the parameters wfk, hk` of both the proposed EM
and [5], by applying the KL-NMF algorithm [17] on cor-
rupted versions of the true source spectra, using |Kj | = 20
components per source. The other parameters were randomly
initialized. For the STFT analysis we used a sine analysis
window with 512 taps and 50% frame overlap, leading to
L = 1697 frames.

In Table 1 we report detailed MASS and diarisation
scores. Each value is an average measure over 10 mixture
realizations with different speakers. Fig. 1 illustrates one
diarisation result for Mix-8. In terms of MASS, we see that
the proposed method performs equally well with [5] on both
Mix-8 and Mix-DC. E.g. on Mix-8 the avg. SDR of the pro-
posed method is 0.2dB higher (8.3dB versus 8.1dB). This
is encouraging, considering that the proposed method has

O
ur

s s1
s2
s3

B
as

e s1
s2
s3

GT = E = 1 GT = 1,E = 0 GT = 0,E = 1 GT = E = 0

Fig. 1. Timing diagram of per source estimated diarisation for
Mix-8 when using the proposed method (top) and the base-
line (bottom). The graphic is color-coded as a function of the
ground-truth (GT) and the estimate (E) per each segment.

Table 1. Average source separation & diarisation scores.
Mix-8 Mix-DC

SDR SIR SAR Acc.(%) SDR SIR SAR Acc.(%)

O
ur

s

s1 7.7 11.6 12.1 93.5 7.8 12.4 12.2 99.5
s2 7.9 14.9 16.6 94.3 7.3 14.0 15.1 93.2
s3 9.2 13.4 14.1 87.5 8.9 13.3 14.0 99.3

avg. 8.3 13.3 14.3 91.7 8.0 13.3 13.7 97.3

B
as

e

s1 7.6 12.6 12.4 89.0 7.7 12.6 12.7 87.8
s2 7.6 13.5 15.9 68.4 7.3 13.1 16.0 82.2
s3 9.0 13.1 14.8 67.4 8.8 13.0 14.8 61.8

avg. 8.1 13.1 14.4 74.9 7.9 12.9 14.5 77.3

estimate the additional parameters needed for diarisation. In
terms of diarisation, the proposed method higher accuracy
than [8] on Mix-8 (91.7% versus 74.9%) and on Mix-DC
(97.3% versus 77.3%). This justifies the joint modeling of
the source activity detection and the source signal recovery.
Qualitatively, we see from Fig. 1 that the activity pattern is
tracked with only a few misdetections.

5. CONCLUSIONS

We introduced an LGM based probabilistic framework for
joint MASS and diarisation of the audio sources in a mul-
tichannel mix. Experiments on underdetermined speech
mixtures showed competitive performance of the proposed
method compared to the state-of-the-art, in particular in di-
arisation. Future research will investigate the ability of the
proposed model to automatically determine the number of
sources J (via Dn̂`

). We will benchmark the performance
of alternative source models, e.g. [24], when bundled with
a diarisation scheme. We will explore realistic initialization
schemes, so to create a fully blind joint MASS and diarisa-
tion method. We espy also the simultaneous use of source
localization cues to improve separation and diarisation.
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