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ABSTRACT

In this paper, we propose a new supervised monaural source separa-

tion based on autoencoders. We employ the autoencoder for the dic-

tionary training such that the nonlinear network can encode the target

source with high expressiveness. The dictionary is trained by each

target source without the mixture signal, which makes the system

independent from the context where the dictionaries will be used. In

separation process, the decoder portions of the trained autoencoders

are used as dictionaries to find the activations in a iterative manner

such that a summation of the decoder outputs approximates the orig-

inal mixture. The results of the instruments source separation ex-

periments revealed that the separation performance of the proposed

method was superior to that of the NMF.

Index Terms— source separation, autoencoder, neural net-

works, non-negative matrix factorization

1. INTRODUCTION

The problem of source separation has continued to receive the atten-

tion of researchers for several decades. In case of monaural source

separation, given a monaural recording that includes a mixture of

sounds from multiple sources, the goal is to separate out the individ-

ual sources.

Non-negative matrix factorization (NMF) [1] is currently one of

the most popular techniques for source separation. NMF employs

compositional models that are interpreted as low-rank representa-

tions, or bases, of the magnitude or power spectrum components of

reference sources. Over the years, various NMF methods have been

proposed [2, 3]. Sparse NMF [4] includes sparsity constraints explic-

itly into the NMF cost function. Convolutive model of NMF [5] em-

ploys spectro-temporal patterns as bases to extract meaningful com-

ponents out of target spectrograms. Phoneme-dependent NMF [6]

learns separate bases for each phoneme of the language. Although

these methods have provided successful results, the performance de-

pends on the expressiveness and selectivity of the dictionary.

The basic NMF approach is generative – the dictionaries for

each source are trained independently. This has the advantage that

no knowledge is required about the competing sources when training

the model for any source; as a consequence, the approach is scalable.

As an alternative, several works to train discriminative bases for

NMF have been proposed [7, 8, 9, 10, 11]. In contrast to conven-

tional NMF where the basis vectors are trained independently on

each source, these approaches optimize target and non-target basis

vectors jointly using mixture signals. In other words, the discrim-

inative methods learn the dictionaries as mixture-specific models.

Therefore, while these models provide significantly improved per-

formance over the basic generative NMF model, their performance

is specific to the mixture contexts for which the dictionaries have

been trained.

An alternate, widely-studied successful trend employs deep neu-

ral network (DNN) approaches for source separation [12, 13, 14, 15,

16]. DNN for monaural separation [17] works as a spectrum domain

classifier which can classify its input spectrum into each source type.

In the recurrent DNN approach [18], given a mixture spectrogram,

the DNN directly reconstructs the target spectrograms. Although

these DNN approaches are proved to outpeform the NMF approach,

the frameworks cannot be easily extended to different contexts since

DNNs are fundamentally discriminatively trained, and the mixture

information is essential in the training stage, which limits the frame-

works to the specific mixture context to which it is trained.

In our work we attempt to retain the advantages offered by both,

the deep neural network architecture, and the natural scalability of

the generative approach. Thus, our focus is twofold:

• Our dictionary employs compositional models represented as

a constructive nonlinear combination as neural networks to

improve the expressiveness of sources.

• In the training stage, the dictionary is trained independently

for each target source which makes it independent of the mix-

ture context in which it will be employed.

In this paper, we employ the autoencoder mechanism [19] for the

dictionary training such that the nonlinear network can encode the

target source with higher expressiveness than a generative NMF

model. In effect, we are employing deep autoencoders as dictionar-

ies to represent sources. Note that our intention is not to improve

over the discriminative model, but rather the generative one. In sep-

aration process, the decoder portions of the trained autoencoders are

used as dictionaries to find the activations in a iterative manner such

that a summation of the decoder outputs approximates the original

mixture.

This paper is organized as follows: Section 2 reviews supervised

source separation based on NMF algorithm. Section 3 describes the

proposed source separation method based on autoencoders. Section

4 shows our experimental setup and results. Finally, we present our

conclusions in section 5.
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2. SUPERVISED SOURCE SEPARATION BASED ON NMF

This section reviews the formulation of NMF [1] for supervised

source separation. Let Y ∈ R
I×J
+ be the magnitude spectrogram

of a monaural observation. An element of matrix [Y]i,j = y(i, j)
denotes the magnitude spectrum coefficient. The frequency index

and the frame index are denoted by i = 1, . . . , I and j = 1, . . . , J ,

respectively. Although, in this paper, the discussion to limited the

case of mixtures of two sound sources for simplicity, it can easily be

extended to include the case of separation of three or more sources.

2.1. Dictionary training

In the NMF algorithm, a target (magnitude) spectrogram is repre-

sented as

Y ≃ WH, (1)

where W ∈ R
I×K
+ and H ∈ R

K×J
+ are regarded as a dictionary of

the target source and a set of corresponding activations, respectively.

K is the number of NMF basis vectors. The beta divergence is often

applied to minimize the error between Y and WH as:

Dβ(Y,WH) =

I
∑

i=1

J
∑

j=1

dβ(y(i, j), ŷ(i, j)) (2)

with

ŷ(i, j) =
K
∑

k=1

w(i, k)h(k, j), (3)

where dβ() denotes the divergence function: β = 0 is the Itakura-

Saito divergence [3], β = 1 is the generalized Kullback-Leibler

(KL) divergence and β = 2 is the squared Euclidean distance.

In the training process, W and H are obtained by multiplicative

update rules and W is stored for the separation process whereas H

is discarded. In the case of separation of two sources, Wdic1 and

Wdic2 are trained individually for the corresponding target sources.

2.2. Separation process

For the separation, the trained matrices Wdic1 and Wdic2 are fixed

while the activations H1 and H2 are updated to best represent the

mixture X as below:

X ≃
[

Wdic1Wdic2

]

[

H1

H2

]

. (4)

We recover an estimate of the target source spectrogram as a matrix

product of the target dictionary and its corresponding activation ma-

trix, e.g., Wdic1H1. The final separated spectrograms are obtained

by multiplying the spectrogram of the mixed source by a Wiener fil-

ter composed from the estimated target source spectrograms [20],

and inverting the result to a time-domain signal using the phase in-

formation of the observed signal.

3. SUPERVISED SOURCE SEPARATION BASED ON

AUTOENCODERS

This section describes the supervised approach based on autoen-

coders. Similar to the NMF approach, the proposed algorithm con-

sists of two stages: the first stage is to train sound dictionaries by

autoencoders, the next stage is to separate a mixture signal using de-

coder portions of the trained dictionaries from the first stage. We

will refer to the proposed algorithm as AESS (AutoEncoder based

Source Separation).

3.1. Dictionary training

In the training process, autoencoders are individually trained to make

dictionaries for target signals. The bottom part of figure 1 shows the

training process of two target sources. The networks for two sources

can be expressed by encoder fENC1,2 and decoder fDEC1,2 functions

described as below:

Ŷ1 = fDEC1(fENC1(Y1))

= fDEC1(H1)

= g
(

W
(L)
DEC1 . . . g

(

W
(l)
DEC1g(W

(1)
DEC1H1)

)

)

, (5)

Ŷ2 = fDEC2(fENC1(Y2))

= fDEC2(H2)

= g
(

W
(L)
DEC2 . . . g

(

W
(l)
DEC2g(W

(1)
DEC2H2)

)

)

, (6)

where Ŷ1,2 and Y1,2 denote the output and input of the autoen-

coders, respectively. H1,2 denote the bottle-neck features from the

hidden layer, superscript ·(l) is the index of the hidden layer, L de-

notes the number of layers, and g() denotes the nonlinear activation

functions such as sigmoid, hyperbolic tangent and ReLU (Rectified

Linear Unit) [21].

The autoencoders are trained to minimize the squared error be-

tween the output and the input:

C(Ŷ1,Y1) =
1

2
‖Ŷ1 −Y1‖

2
F + λ‖H1‖1, (7)

C(Ŷ2,Y2) =
1

2
‖Ŷ2 −Y2‖

2
F + λ‖H2‖1, (8)

where ‖·‖2F denotes Frobenious norm, ‖·‖1 denotes L1 norm and λ

is a sparsity constraint parameter of L1-norm regularization for H1

and H2.

3.2. Separation Process

The AESS conducts the separation using the decoder portions of

the autoencoder, fDEC1() and fDEC2(). The main idea of the sepa-

ration process is to explore H1 and H2 such that a summation of

decoded features approximates the observed mixture. The weights

of the Wiener filter α1 and α2 are also updated to finally reconstruct

the target spectrograms together with decoded features used as soft

masks. The top part of figure 1 shows the separation process.

Prior to the optimization step, H1 and H2 are initialized by en-

coder portions of trained networks such as H1 = fENC1(X) and

H2 = fENC2(X), respectively.

Additionally, we calculate Ŷ1 and Ŷ2 from initialized H1 and

H2 using decoders described in Eq. (5) and (6).

The estimate of the mixture is expressed as a weighted sum of

Ŷ1 and Ŷ2 as:

X̂ = α1Ŷ1 + α2Ŷ2, (9)
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Fig. 1. Diagram of the autoencoder based source separation (AESS)

algorithm. AESS consists of a dictionary training process (bottom)

and a separation process (top).

where α1 and α2 denote scalar coefficients to control the mixture

ratio of decoded features. The cost function for the AESS approach

is also based on beta divergence described in Eq. (2):

Dβ(X, X̂) =
I

∑

i=1

J
∑

j=1

dβ(x(i, j), x̂(i, j)). (10)

To achieve the separation, we try to minimize the divergence by up-

dating H1, H2, α1 and α2:

{H1,H2, α1, α2} = arg min
H1,H2,α1,α2

Dβ(X, X̂). (11)

For the updates, an arbitrary optimization method such as gradient

descent can be used. In our work we use gradient descent through

backpropagation. When the optimization is completed by minimiz-

ing the divergence, the decoded features are expected to represent

the estimates of the magnitude spectrograms for target sources.

Finally, the separated spectrograms are obtained by Wiener fil-

tering with the mixture ratio α1 and α2:

Ŝ1 = X ◦
α1Ŷ1

α1Ŷ1 + α2Ŷ2

, (12)

Ŝ2 = X ◦
α2Ŷ2

α1Ŷ1 + α2Ŷ2

, (13)

where the symbol ◦ denotes the Hadamard product (element-wise

multiplication).

Although the basic structure of representing spectrograms based

on a multiplication of matrices in Eq. (5) is analogous to the super-

vised NMF formulation in Eq. (1), there are two differences. First,

AESS uses nonlinear functions and multistage matrix operations en-

abling us to increase the expressiveness of dictionaries. Second, if

ReLU is used as the nonlinear function, the decoder coefficients can

both be negative and non-negative values while keeping the non-

negativity of the reconstructed spectrograms. On top of the above

features, the trained dictionary is not dependent on the mixture con-

text of mixture signals, as described in section 1. Thus, the process

is scalable, in that a model that is trained once can be applied to any

arbitrary mixture that includes the signal.

4. EVALUATION

4.1. Experimental setup

To evaluate the proposed algorithm, we compared our proposed

method with sparse NMF [4]. We used the Bach10 dataset [22]

consisting of ten monaural recordings of four instruments: violin,

clarinet, saxophone and bassoon. All recordings were downsampled

to 16 kHz. Magnitude spectrums were computed from the dataset

using 1024-point STFT with half overlap.

We trained four autoencoders individually from the instruments

recordings to extract the decoder portions. Eight musical pieces (set

No.1-8) were used as training data, the set No.9 as validation data,

and set No.10 as test data. The key parameters of the autoencoders

in our experiments were (a) the layer of the network: three, five

or seven, (b) learning rate: 0.01, (c) nonlinear function: ReLU, (d)

sparsity coefficient: λ = 10−4, (e) dimensions of input and out-

put layer: 513, and (f) L2 regularization: 10−4. The parameters of

separation process were (i) step size of gradient descent: 10−3, (ii)

iterations: 3000, and (iii) optimization frames: all frames per input

data as batch process.

The separation performance was evaluated by signal-to-distortion

ratio (SDR) improvement obtained from the BSS Eval Toolbox [23].

For training NMF, the number of bases was set to 320 as this was

found to provide the best results on the dataset.

4.2. Results

4.2.1. Comparison of instruments pairs

Table 1 compares the separation performance of different algorithms

applied to various pairs of instruments. Euclid (EU) distance and

generalized Kullback-Leibler (KL) divergence were used for cost

functions. Compared with sparse NMF on average, both EU and

KL-based AESS show better SDR improvements. In particular, KL-

based AESS shows significantly better results for the most of the

instrument pairs except S-B.

4.2.2. Comparison of decoder configuration

Table 2 shows averaged SDR improvements of all instrument pairs

in case of different decoder configurations. For example, a decoder

configuration 20-600-513 denotes that the autoencoder used for

trainings comprised fully connected five layers of orders 513-600-

20-600-513. The result shows that using a decoder with deeper

layers leads to a better performance. In addition, regardless of the
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Pair of SDR Improvement [dB]

Instruments sNMF [4] AESS (EU) AESS (KL)

V-C 10.86 10.53 12.59

V-S 9.43 10.91 11.28

V-B 8.61 8.63 9.10

C-S 11.18 12.17 12.85

C-B 10.93 10.80 11.57

S-B 8.79 7.78 8.00

Average 9.97 10.14 10.90

Table 1. Source separation performance of various pair of instru-

ments. Alphabets denote the instrument names, V: Violin, C: Clar-

inet, S: Saxophone and B: Bassoon. The cost function was used EU:

Euclid and KL: generalized Kullback-Leibler divergence.

decoder configurations, the decoders with 20 hidden-layer units

show the best results.

Decoder Average SDR

Configuration Improvement [dB]

20-513 7.85

20-600-513 10.69

10-200-600-513 9.09

20-200-600-513 10.58

50-200-600-513 9.39

10-200-800-513 9.50

20-200-800-513 10.90

50-200-800-513 9.31

Table 2. Source separation performance of different decoders

configuration. The cost function of AESS was used generalized

Kullback-Leibler divergence.

4.2.3. Spectrograms of separated sources

Figure 2 shows the spectrograms in the case of two instrument sep-

aration of V-C. The separated source 1 and 2 were obtained by KL-

based AESS which layers are 20-200-800-513. Comparing the sep-

arated sources with original sources, it is clear that a structure of

harmonics and vibrato components were kept through the separation

process.

The results of experiments revealed that source separation per-

formance can be improved by the autoencoder trainings. Additional

examples can be found at http://mlsp.cs.cmu.edu/projects/AESS

5. CONCLUSION

In this paper, we have proposed a new supervised monaural source

separation based on autoencoders. The algorithm employs deep au-

toencoders as the dictionary for signals, such that the nonlinear net-

work can encode the target source with high expressiveness. The

Fig. 2. Source separation example using the Bach10 dataset. (a) The

mixture of clarinet and violin; (b) original source 1 of clarinet; (c)

separated source 1; (d) original source 2 of violin; and (e) separated

source 2

approach is generative – the dictionaries are not dependent on the

mixture context of signals. The results of the instruments source

separation experiments reveal that the separation performance of the

proposed AESS was superior to that of sparse NMF.

However, the formalism leads us to many potential extensions.

Although our dictionaries have many parameters, they effectively

represent only a small number of degrees of freedom, i.e. the size

of the bottleneck. These are effectively low-rank non-linear repre-

sentations. We are currently investigating the other end of the do-

main, namely high-rank domains where, instead of a bottleneck, the

network has a large number of intermediate nodes with appropriate

sparsity constraints.

The nature of the model also naturally extends to recurrent mod-

els. The auto-encoder framework is easily extended to RNNs and

LSTMs, to obtain more expressive dictionaries that also capture tem-

poral structure. We are also investigating this avenue.

Finally, we also plan to extend our evaluations to more chal-

lenging problems, such as with more than two sources, possibly in

the presence of noise that must also be estimated. The generative

framework easily extends to these scenarios.
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