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ABSTRACT

We propose a novel informed source separation method for audio
object coding based on a recent sampling theory for smooth signals
on graphs. Assuming that only one source is active at each time-
frequency point, we compute an ideal map indicating which source
is active at each time-frequency point at the encoder. This map is
then sampled with a compressive graph signal sampling strategy that
guarantees accurate and stable recovery at the decoder. The graph is
built using feature vectors, computed using non-negative matrix fac-
torization, that allows us to connect similar source activations in the
time-frequency plane. We show that the proposed approach performs
better than state-of-the-art methods at low bitrate.

Index Terms— Informed source separation, audio object cod-
ing, non-negative matrix factorisation, graph signal processing, com-
pressive sampling.

1. INTRODUCTION

As audio source separation has remained a challenging task, es-
pecially in the single-channel case (an extreme case of under-
determined situation where the are less observations than un-
knowns) [1], the use of prior information about the sources to
guide the separation process has been largely considered in the lit-
erature and is known as informed source separation (ISS) [2]. Such
information can be, e.g., music score [3], text transcript [4], or ex-
tracted from the sources themselves [5–7]. The latter case concerns
audio coding applications in which the so-called side information
is extracted at the encoding stage where the original sources are
known, and then used to guide the source estimation at the decoding
stage where only the mixture is observed. It is also related to spatial
audio object coding (SAOC), a recent approach standardized in the
MPEG audio group, [8] for the same type of practical application.
As parametric coding schemes, the encoding processes of both ISS
and SAOC require remarkable computation costs at the encoder.
Thus, in the same line of research, Bilen et al. [9] proposed a com-
pressive sampling-based ISS that shifts the computational load from
the encoder to the decoder, making the former extremely fast.

In this paper, we present a novel ISS approach targeting the
ability to greatly reduce bitrate for transmission. Motivated by the
fact that audio sources are usually disjoint in the time-frequency
(TF) representation, i.e., only one source is active at each time-
frequency point [10], a map showing which source is active at each
time-frequency point is a good indicator to separate the sources from
the mixture. At the encoder, as the original sources are known, this
oracle map can be easily computed and considered as side informa-
tion to guide the source separation given the mixture. To compress
such side information, this map is then sampled with a compressive
graph signal sampling strategy to guarantee the ability to recover it
at the decoding stage for source separation. As the underlying graph

should be available at both the encoding and decoding sides, we pro-
pose to build it using feature vectors derived from the non-negative
matrix factorization (NMF) of the mixture signal [11]. Compared
to the existing works [5–7, 9], we show that the proposed approach
can go toward lower bitrates while still offering reasonable source
separation performance at the decoding stage.

The rest of the paper is organized as follows. Section 2 presents
the problem formulation, followed by the description of the com-
pression strategy via graph sampling in Section 3. Experimental re-
sults are shown in Section 4. Finally, we conclude in Section 5.

2. PROBLEM FORMULATION

In ISS, a mixture of different sources is transmitted to the decoder
along with side information to help the separation of the sources
from the mixture. We denote by sj , j = 1, . . . , J , the different
sources in the temporal domain. The mixture x satisfies

x =

J∑
j=1

sj . (1)

At the encoder, our goal is now to construct and transmit addi-
tional information that will help the decoder estimate each source sj
from x.

A common strategy in audio source separation is to work in the
TF domain. The short-time Fourier transform (STFT) of x is com-
puted and it is assumed that a single source is active at each TF point.
Under this assumption, extracting source j thus consists in identify-
ing where this source is active in the TF domain. This is the approach
we follow to construct the information to transmit for the separation.

Let X ∈ CF×N and Sj ∈ CF×N denote the complex matrices
of the STFT coefficients of the mixture x and of the source sj , re-
spectively. To determine where source j is active in the TF domain,
we compute

Mj = argmin
M∈RF×N

‖X�M− Sj‖2F = Real (Sj � X) , (2)

for each source j = 1, . . . , J . In the above equation, � and �
stand for the element-wise product and division, respectively.1 We
then determine which unique source is dominantly active at each TF
point (f, n) by checking which Mj has the largest entry at (f, n).
We thus obtain a map Z ∈ {1, . . . , J}F×N whose entries are

Z[f, n] ∈ argmax
16j6J

Mj [f, n]. (3)

Note that, with the above definition, a source index is arbitrarily cho-
sen in the case where all sources are inactive at a TF point.

1For simplicity, we assumed that X does not contain any zero entries.
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With the knowledge of X and Z, we can estimate all the sources
as follows. For each source j, we construct the binary activation
matrix M∗j ∈ {0, 1}F×N that satisfies

M∗j [f, n] =

{
1 if Z[f, n] = j,
0 otherwise, (4)

and compute the inverse STFT of X�M∗j to obtain an estimation of
sj . Our goal now is to send a compressed version of the map Z to the
decoder to be able to estimate the binary masks M∗j at the decoder.

3. COMPRESSION VIA GRAPH SAMPLING

The technique we use to compress the map Z is based on a recent
sampling theory for smooth signals on arbitrary graphs [12]. Let us
start by recalling some concepts of graph signal processing.

3.1. Graph signal processing basics

An undirected graph G is a set of nodes N , edges E , and an adja-
cency matrix A ∈ R|N|×|N|. The entries of A satisfy

A[i, j] = A[j, i] > 0 if (i, j) ∈ E and A[i, j] = 0 otherwise. (5)

The degree matrix D ∈ R|N|×|N| is the diagonal matrix with entries
satisfying D[i, i] =

∑|N|
j=1 A[i, j]. The graph Laplacian is defined

as L = D − A. It is a real, symmetric, positive semi-definite
matrix. Its real normalised eigenvectors form an orthonormal ma-
trix U = (u1, . . . ,u|N|) ∈ R|N|×|N|. The corresponding real
eigenvalues are denoted 0 = λ1 6 . . . 6 λ|N|. The matrix U is
usually viewed as the graph Fourier basis of G [13]. For any sig-
nal z ∈ R|N| living on the nodes of G, its Fourier representation
is ẑ = Uᵀz. Note that the Fourier coefficients ẑ are ordered in in-
creasing frequencies. A signal z is k-bandlimited on G if its Fourier
coefficients ẑk+1, . . . , ẑ|N| are null [12,14,15]. More generally, we
say that a signal is smooth on G if its energy is essentially concen-
trated at the lowest frequencies.

3.2. Intuition

We recall that each entry of Z indicates the active source at the cor-
responding TF point. Let us view Z as a signal on a graph of NF
nodes – one node for each matrix entry. Imagine for a moment that
the edges of this graph are such that: the nodes corresponding to
source 1 are connected together and to no other nodes, the nodes
corresponding to source 2 are connected together and to no other
nodes, etc. This graph has obviously J different connected compo-
nents, each one corresponding to exactly one source. Therefore, Z
is constant within each component: Z is smooth on this graph. Ac-
tually, one can easily prove that Z is exactly J-bandlimited on this
ideal graph and is therefore compressible. Indeed, one just needs
to sample the value of one node per component to have a complete
knowledge of Z. Each sample identifies the source index associated
to the component and the map is reconstructed from the J samples
by propagation of the sampled values to all connected nodes.

The above scenario is ideal. In practice, if we are able to con-
struct a graph G such that Z is approximately k-bandlimited, then
the results in [12] show that only O(k log(k)) samples are sufficient
to ensure a stable and accurate reconstructions of Z at the decoder.
In the next sections, we detail the construction of G and explain the
sampling and reconstruction procedures.

3.3. Graph construction

The graph G is used at the decoder for reconstruction and can also be
used at the encoder to optimise the samples of Z to send. Therefore,
we need to find a way to construct an appropriate graph G which is
identical at the encoder and at the decoder. Note that we do not want
to build the graph at the encoder and transmit it to the decoder as
this would be as costly as sending Z directly. We thus construct the
graph from the mixture x, which is the only complete information
available at both the decoder and the encoder.

NMF [11] is a well-known tool to estimate the spectral char-
acteristics of audio signals. We propose here to use NMF to con-
struct one feature vector per TF point, which we will use to con-
struct G. We first compute the power spectrogram V ∈ RF×N of
x, V[f, n] = |X[f, n]|2, and factorize it by solving the following
optimization problem [16]

(W∗,H∗) = argmin
W∈RF×Q

+ ,H∈RQ×N
+

D(V ‖WH), (6)

with D(V ‖ V̂) =

F,N∑
f,n=1

dIS(V[f, n] ‖ V̂[f, n]),

where dIS(x‖y) = x/y − log (x/y) − 1 is the Itakura-Saito (IS)
divergence. In this NMF, W∗ is the spectral dictionary, H∗ is the
time activation matrix, and Q is the number of NMF components.
To solve (6), the matrices W and H are initialized with random non-
negative values and are iteratively updated via the multiplicative up-
date rule until convergence [11,16]. Note that the same random gen-
erator seed value can be used at the encoder and decoder to recover
the same result.

When Q > J is appropriately chosen, the above NMF has the
tendency to isolate the spectral characteristics of each source, i.e.,
W∗[:, l] is a spectral characteristic of one of the sources and H∗[l, :]
indicates the contribution of this characteristic in the overall spectro-
gram at each instant. Note that one source is usually characterized
by several NMF components. At each TF point (f, n), we build the
following Q-dimensional feature vector f(f,n) ∈ RQ

f(f,n) =
(
W[f, 1]H[1, n], . . . , W[f,Q]H[Q,n]

)ᵀ
. (7)

This feature vector indicates the contribution of each spectral char-
acteristic at (f, n), showing which ones are the most active. As only
one source is essentially active at each TF point, connecting feature
vectors f(f,n) which are similar should connect nodes for which the
same source is likely to be active.

To simplify notations, let i ∈ {1, . . . , NF} index each time
frequency point (f, n), and substitute fi for f(f,n). Let also z ∈
{1, . . . , J}NF be the vectorised version of Z. In order to construct
G, we connect each feature vector to its 8 nearest neighbours (in the
`1 sense), which gives a set E of 8NF edges. The adjacency matrix
A ∈ RNF×NF of G satisfies A[i, i′] = 0 for (i, i′) /∈ E and

A[i, i′] = exp
[
− ‖fi − fi′‖1/µ

]
for (i, i′) ∈ E , (8)

where µ > 0 is the mean of the values in the set {‖fi − fi′‖1 :
(i, i′) ∈ E}. We then symmetrise the matrix A and compute the
graph Laplacian. As the quality of the feature vectors depends on
the choice of Q, we perform several NMFs for different values of Q
and concatenate all the feature vectors obtained before constructing
the graph G. This is an advantage of the proposed approach as we
do not have to find the optimal value of Q as in conventional NMF
based methods. Furthermore, another potential advantage is that a
fusion of several NMFs with different Q may actually work better
than using one single NMF, even if the choice of Q is optimised.
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Fig. 1: SDR (dB) vs. bitrate (kbps/source). (a) Results obtained by solving (12) (red crosses) or by zero-filling (blue crosses). (b) Results
obtained by concatenating feature vectors computed with Q = 3, 6, 9 (red crosses) or Q = 6 only (blue crosses). (c) Results obtained
with different sampling distributions: ps (red crosses), po (blue crosses), uniform distribution (black crosses). (d) Results obtained with our
method (red crosses), [6] (grey triangles) and [7] (green circles).

3.4. Sampling

To sample z, we follow the method described in [12]. This method
relies on a sampling probability distribution defined on the nodes of
G. This distribution is represented by p ∈ RNF . We obviously have
‖p‖1 = 1. The ith entry of p, i.e., pi represents the probability of
sampling node i. The samples are then chosen by selecting randomly
m different nodes according to p. We denote the set of selected
indices Ω = {ω1, . . . , ωm} ⊂ N .

The results in [12] show that the efficiency of the sampling de-
pends on the graph cumulative coherence, which is a parameter that
characterises the interactions between the graph structure and the
sampling distribution. In particular, it is proved in [12] that, if

pi = ‖Uᵀ
kδi‖

2
2
/k, (9)

where Uk = (u1, . . . ,uk) and δi is the Dirac at node i, then
m = O(k log(k)) measurements are sufficient to sample all k-
bandlimited signals, with high probability. Up to the factor log(k),
this is an optimal result as we necessarily need m > k to sample
any k-bandlimited signal. Let us highlight however that, in practical
applications, if the signals of interest are not exactly bandlimited
or have more intrinsic structures, the above probability distribution
may not be any more the one leading to the best results. We will test
different sampling distribution in our experiments.

In the following, for any vector a ∈ RNF , we denote by aΩ ∈
Rm its restriction to the indices in Ω. The samples sent to the de-
coder are thus zΩ, after coding as described in Section 3.5. Note
that we do not send the list of indices Ω at the decoder. Instead, the
sampling distribution p is recomputed at the decoder and the list Ω is
re-obtained at the decoder by fixing in advance the same seed value
of the pseudo-random generator at the encoder and the decoder.

3.5. Differential coding

The last process in the encoder is the coding strategy used to encode
the list of values in zΩ. As only J values, or symbols, appear in
zΩ, the simplest strategy would consist in coding each value using
log2(J) bits. However, as all values do not appear with the same
probability, one can achieve better results by coding this list of sym-
bols using, e.g., arithmetic coding. This is the strategy adopted here.
Yet, we noticed that better results are achievable by using differential
coding before arithmetic coding.

We reorder the indices in Ω as follows. We travel across the
time-frequency plane starting from the lowest time index and lowest

frequency, then going towards the largest time index, and continue
in zigzag towards the highest frequencies. The indices are reordered
in order of appearance during this travel. Even though the indices
in Ω are selected at random, we noticed that for the sampling dis-
tributions that lead to the best results, this reordering makes appear
sequences of constant values: the same source remains active for a
while. To take advantage of this effect, we use differential coding
to encode the reordered list. For simplicity, let us assume that the
indices ω1, . . . , ωm are ordered as just described. We compute the
sequence ẑ ∈ {0, . . . , J − 1}m that satisfies ẑ[1] = z[ω1]− 1 and

ẑ[i] = (z[ωi]− z[ωi−1]) mod J for all i ∈ {2, . . . ,m}, (10)

which is then coded using arithmetic coding. In this work, we do
not implement arithmetic coding but instead estimate the attained
bitrate. We compute the probability qj of appearance of each symbol
j ∈ {0, . . . , J − 1}. Note that we would need to transmit these
J parameters for decoding in practice. We then estimate that the
number of bits needed to code each symbol by arithmetic coding is
log2(qj). The number of bits to code the sequence ẑ is therefore∑J−1

j=0 Nj log2(qj), where Nj is the number of times j appears in
the sequence.

3.6. Reconstruction

At the decoder, we have access to zΩ (after decoding) and we can
also reconstruct the graph G. We can thus try to estimate either z
or the binary masks m∗j – the vector m∗j ∈ {0, 1}NF denotes the
vectorised version of M∗j . Indeed, if z is smooth on G then the masks
m∗j are also smooth on G by construction. Note also that the sampled
binary mask (m∗j )Ω can directly be deduced from ZΩ by using Eq. 4
at the sampled TF points.

Instead of reconstructing z, we choose to estimate the J masks
mj using the reconstruction method proposed in [12]. It is proved
that one can stably and accurately estimatem∗j by solving

min
m∈RNF

∥∥P [mΩ − (m∗j )Ω

]∥∥2

2
+ γ mᵀ Lm, (11)

where γ > 0 and P ∈ Rm×m is the diagonal matrix that satisfies
Pii = p

−1/2
ωi . We let the reader refer to [12] for the precise bound

on the reconstruction error. In this paper, we opt for the constrained
version of the above problem. We solve

m̃j = argmin
m∈RNF

mᵀ Lm subject to mΩ = (m∗j )Ω. (12)
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Fig. 2: Logarithm of the sampling distributions po obtained for
k = 0.05NF (left) and ps (right).

Note that the above problem can be solved efficiently using, e.g.,
FISTA [17], which only involves one matrix-vector multiplication
with the sparse Laplacian matrix L at each iteration. The sources are
then separated from the mixture using the estimated masks m̃j .

4. EXPERIMENTS

We conduct experiments using J = 3 sources of a music record-
ing of 5.5 seconds sampled at 16 kHz. For computational reasons
when constructing the graph G, we divide these recordings into seg-
ments of 1024 ms2 and we compress them independently with our
method. The STFT is computed using a half-overlapping Hann win-
dow of 1024 samples. The performance is evaluated by the signal-
to-distortion ratio (SDR) after separation of the 3 sources from the
mixture. The SDR is a benchmarked metric measured in dB grading
the overall signal distortion [18]. The reported results are obtained
by averaging the SDRs obtained after compression and separation
for the 3 sources. The bitrate is estimated as described in Section 3.5.

With our method, the number of measurements m varies be-
tween 5 and 15 percent of NF in all experiments. We perform 10
simulations per number of measurements corresponding to 10 inde-
pendent draws of Ω. Each cross in the plots of Fig. 1 corresponds to
one experimental result.

4.1. Quality of the signal model

We first want to confirm that considering that the binary masks are
smooth on G is a valid signal model for reconstruction. Therefore,
we compare the source separation quality when the binary masks are
obtained by solving (12) or by zero-filling, which consists in keeping
the known value ofm∗j in Ω and setting to 0 all the values outside of
Ω. In both cases, the graph is obtained by computing and concatenat-
ing the feature vectors withQ = 3, 6, 9. The sampling distribution p
is obtained by normalising the power spectrogram V of the mixture.
We denote this distribution ps. This sampling distribution favours
the selection of measurements where the sources have most of their
energy. The results are presented in Fig. 1a.

We notice an advantage of using the graph regularisation at low
bitrate with an improvement of around 1 dB on average. At high
bitrate, the performance of both methods saturates to reach an SDR
of about 9.40 dB. Note that the best result one can achieve with
a complete knowledge of the ideal binary masks m∗j is 9.55 dB.
We are thus close to this SDR at the highest bitrate tested, i.e., for
m = 0.15NF . There is thus less room for improvement when using
the graph at high bitrate. This result also indicates that most of the
information about the binary masks is contained in the 15 percent of
measurements selected.

2Mirroring is used for the last segment which is shorter than 1024 ms.

4.2. Influence of the number of NMF decompositions

We study now the effect of concatenating or not the feature vec-
tors obtained by NMF for different values of Q. We run experi-
ments where the graph is obtained by computing feature vectors with
Q = 6 only or by concatenating those obtained at Q = 3, 6, 9. The
sampling distribution used is ps. The binary masks are recovered by
solving (12). The results are presented in Fig. 1b.

On average, we notice a slight improvement of using multiple
NMFs at different values of Q to construct the graph. We also ob-
served the same behaviour when the graph is constructed withQ = 3
or 9 only. The graph is thus slightly better estimated when concate-
nating the results of different NMFs.

4.3. Influence of the sampling distribution

In this third set of experiments, we study the effect of different sam-
pling distributions on the attained separation quality. We test the
uniform sampling distribution, the distribution ps, and the distribu-
tion defined in (9) (denoted po). This last distribution is estimated
using the fast algorithm presented in [12]. The parameter k in (9)
is adapted to m. We use k = m/3 in this set of experiments. The
graph is obtained by computing and concatenating the feature vec-
tors obtained with Q = 3, 6, 9. The binary masks are recovered by
solving (12). The results are presented in Fig. 1c.

We observe that the uniform distribution yields the worse results.
The quality does not even increase with the bit rate. The distribu-
tions ps and po yield the best results, with the first one performing
the best. For illustration, we show in Fig. 2 the logarithm of these
distributions. Both distributions concentrate most of the measure-
ments at low frequencies but po allows the highest frequencies to
be sampled with higher probability than ps. While po depends on
the structure of G only, ps prevents to place measurements where
none of the sources has energy. We expect that the best distributions
are obtained, e.g., from a mixture of these two distributions so as
to obtain a distribution adapted to both the graph G and the energy
distribution of the sources. We however have not yet explored this
possibility, which is left as future work.

4.4. Comparison to other methods

Finally, we compare our method with the ISS methods presented
in [6] and [7]. The graph is obtained by concatenating the feature
vectors obtained at Q = 3, 6, 9. We use the sampling distribution
ps. The binary masks are recovered by solving (12). The results are
presented in Fig. 1d.

We clearly see that the advantage of the proposed method at low
bitrate where it outperforms [6] and [7]. At high bitrate, while the
performance of our method saturates, the method presented in [7]
allows to attain a better separation quality.

5. CONCLUSION

We propose a novel ISS method for audio coding based on recent
sampling developments for smooth signals on graphs. We show that
this method achieves better separation quality at the decoding side
for low bitrate than other state-of-the-art methods. To improve even
further the method, it would be interesting to find how to compute
a sampling distribution optimised for both the graph structure and
the specific energy distribution of the mixture in the time-frequency
plane. Note also that NMF is just one possibility to construct G.
Other methods, such as, e.g., in [19] might improve the results.
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