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ABSTRACT

Automatic inspection of underwater pipelines has been a
task of growing importance for the detection of a variety of
events, which include inner coating exposure and presence
of algae. Such inspections might benefit of machine learning
techniques in order to accurately classify such occurrences.
This article describes a deep convolutional neural network
algorithm for the classification of underwater pipeline events.
The neural network architecture and parameters that result
in optimal classifier performance are selected. The convolu-
tional neural network technique outperforms the perceptron
algorithm, for different event classes, reaching on average
93.2% classification accuracy, while the accuracy achieved
by the perceptron is 91.2%.

Index Terms— Convolutional neural network, event clas-
sification, feature extraction, wavelet transform, perceptron.

1. INTRODUCTION

The intensification of subsea oil and gas field exploitation has
turned the inspection of underwater pipelines into a progres-
sively demanding task. Usually conducted with the use of
ROVs (Remotely Operated Underwater Vehicles), which em-
ploy sensors and cameras and are controlled through radio or
cable connections [1], visual inspection by humans is a te-
dious endeavor, particularly in the cases of long inspections,
low image quality and search for multiple targets [2]. In con-
trast to ROVs, Autonomous Underwater Vehicles (AUVs) are
able to automatically detect and track underwater pipelines.
In this regard, event classification methods based on machine
learning can be used in order to automatically inspect the
pipelines.

Classic neural network techniques, such as the multilayer
perceptron (MLP), are strongly dependent on feature extrac-
tion methods, which are often manually carried out. Recently,
deep learning algorithms have been able to iteratively extract
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their own features from original data. This paper focuses
on the application of one of these recent techniques, namely
convolutional neural network (CNN), to event classification.
A method consisting of a perceptron preceded by a wavelet-
based feature extractor is also described, and the results ob-
tained using the perceptron and the deep CNN architectures
are compared.

2. EVENT CLASSES AND DATA SETS

The classifier developed in this work was used to detect four
different event types. Inner coating exposure (ICE) occurs
when the pipeline surface is damaged. The outer cover dis-
ruption is caused by the object impact and by natural circum-
stances, such as waves, sea currents, among others. Visu-
ally, it can be described as a texture region containing parallel
stripes, possibly surrounded by homogeneous regions.

The presence of algae can be characterized by a variety of
shapes, colors and textures. This event might hide damages
on the pipeline surface, hampering their detection.

Flanges are structures commonly found at pipeline junc-
tions, and they are used for holding pipeline sections together.
When they are seen from a frontal view, these events are
outlined by hexagons surrounding cylinders. These forma-
tions can also be seen from a side view, and in that case they
are characterized by thinner rectangles emerging from thicker
structures.

Concrete blankets (CB) are structures placed under or
over the pipelines, and they are constructed to give support
or protect the pipelines from vibrations. These events are
usually identified by a regular brick array.

In order to train and test the implemented classification
system, windows containing event samples were extracted
from high resolution images (1280 × 720), thus composing
databases that are used as neural network inputs. Windows
that do not contain any of these classes were also extracted, to
compose the negative sample database. For each event class,
positive and negative samples were mixed, so that the system
would perform binary classification. 60 × 60 pixel win-



dows were extracted for ICE, algae and CB samples, whereas
80× 80 pixel windows were extracted for flanges, due to the
need to include their entire geometry in each sample.

Fig. 1 shows, in each row, samples belonging to each
class. In this figure, windows containing flanges were resized
to 60× 60 pixels, to match the other samples visual aspect.

Fig. 1. Samples from different event datasets. From top to
bottom rows, ICE, algae, flange, CB and negative samples.

3. CONVOLUTIONAL NEURAL NETWORK

The implemented CNN topology consists of two convolu-
tional, two max pooling and three fully connected (FC) layers.
The first layer is a 32 kernel convolutional layer [3], which
detects relatively simple features, which can be easily recog-
nised and interpreted. After that, a pooling layer [3] is used,
so that max pooling is applied to 2×2 regions, with strides [3]
of 2. Subsequently, another 32 kernel convolutional layer is
applied, to detect more abstract and detailed features, which
are usually present among the ones from the previous layer. A
pooling layer applies max pooling once again to 2×2 regions,
with strides of 2. Three FC layers are subsequently applied.
They map the previous layer outputs into deeper features, to
allow the best classification performance. The FC layers have,
respectively, 512 outputs, 256 outputs and 1 output.

At each convolutional layer output, batch normalization
[4] is performed. The optimizer utilized was Adam [5], with
learning rate set to 0.001. Rectified linear unit (ReLu) activa-
tion function was used after each convolutional and FC layer.
After every FC layer, dropout regularization [6] was used,
with dropout probability of 50%. The loss function chosen
was cross entropy. The batch size was set to 100. The CNN
was implemented using Keras API.

4. RESULTS

The CNN classification accuracy was compared to the one
from a system comprised of a multilayer perceptron pre-
ceded by a wavelet-based feature extractor [7]. A 3-level
Daubechies 2 (Db2) wavelet was employed, and the mean
and the variance of the wavelet coefficients at each level were
used as features for the neural network [7].

Results obtained by the CNN and by the MLP for the
four classes of events are shown in Table 1. For each event

class, 100,000 positive and 100,000 negative samples were
randomly mixed. Among these, 162,000 samples were used
for training, 20,000 for testing and 18,000 for validating the
networks. Before being applied to the neural network input,
each window is converted to grayscale, in order to eliminate
color dependence.

Table 1. Classification accuracy for the four different event
classes.

Accuracy (%) ICE Algae Flange CB
CNN 96.5 98.3 83.0 95.0
MLP 94.6 97.0 82.4 90.8

5. CONCLUSIONS

The CNN was shown to efficiently classify underwater
pipeline events in comparison with the MLP based on wavelet-
computed features. Without the need of manually selected
feature extraction, the CNN obtained a higher classification
accuracy on all four event classes that were considered in this
paper, achieving 93.2% on average, whereas the perceptron
accuracy reached 91.2% on average.
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