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ABSTRACT

Existed inherent sparsity of natural images in some domains helps
to reconstruct the signal with a lower number of measurements. To
benefit from the sparsity, one should solve the reweighted `1-norm
minimization algorithms. Although, the existed reweighted `1-norm
minimization approaches work well for k-sparse signals, but, the per-
formance of these methods for compressible signals are not compet-
itive with unweighted one. Motivated by this challenge, in this pa-
per, we propose a new reweighted `1-minimization algorithm based
on singular value decomposition (SVD) of compressible signals like
images. Moreover, we develop our proposed algorithm on the block-
based compressed sensing (BCS) to make it applicable to large-size
images. Simulation results also demonstrated the superiority of our
proposed method over current state-of-the-art reweighted CS recon-
struction algorithms for natural images.

Index Terms— Reweighted Compressed Sensing, Block-Based
compressed sensing, Singular Value Decomposition.

1. INTRODUCTION

The signal reconstruction from a low number of sampling measure-
ments is one of the popular aims of the signal processing. A conven-
tional sampling method is Nyquist-Shannon theorem which states
that if the signal’s highest frequency is less than half of the sampling
rate, the signal could be reconstructed perfectly. This sampling rate
could be so high for most of the applications which makes the com-
pression necessary after sampling process. In 2006, it is proved that
the existence of some structure like sparsity as a side information
could help to reduce the required number of samples for signal re-
construction which resulted in introducing the theory of Compressed
Sensing (CS) [1].

There are several reconstruction algorithms for CS, such as the
basis pursuit (BP) algorithm, total variation (TV) algorithm and the
iterative thresholding (IT) algorithm. Recently, in order to achieve
better performance, reweighted CS is developed in [2]. It is proved
that replacing the `1-norm with a weighted `1-norm could often
eventuate in a better recovery performance of the sparse signals. The
weighted CS approach of [2] utilizes an iterative algorithm to deter-
mine weights as a function of the reconstructed signal in the previous
iteration. Practically the `1-norm is replaced by logarithm function
and then the popular Majorization-Minimization (MM) algorithm is
used to solve the problem [2]. Although in [2] the performance of
recovery for sparse signals has been enhanced, but as will be shown
in this paper, reweighted `1-minimization approach still has not a
better performance for compressible signals such as natural images
and videos compared to unweighted CS.

In this paper, unlike the conventional weighted CS approaches
[2–4], we propose to design weights based on the SVD of natural
images instead of signal values. Our proposed approach is also dif-
ferent from [5] in the sense that the prior information of activity of
each entry of unknown signals is not used. But, since the SVD of the
signal has all required information about the signal, we take advan-
tage by using the SVD of unknown signal. Moreover, we develop
our proposed algorithm on the block-based compressed sensing [6]
to make it applicable to the large-size images.

2. PROPOSED APPROACH

Our aim is to propose a novel weighted compressed sensing method
which can have suitable performance for compressible signals. To
exhibit the relevancy between the previous algorithms and our pro-
posed method, consider the following reweighted problem of [2]:

min
s∈RN

N∑
i=1

log (|si|+ ε)

s.t. y = ΦΨ︸︷︷︸
θ

s
(1)

where y ∈ RM is a measurement vector and s ∈ RN×1 is k-sparse
signal which could be vectorized version of the some multidimen-
sional signals (x ∈ RN×1) like image and video in some basis
Ψ ∈ RN×N , (i.e. x = Ψs). Assume that the signal x is sam-
pled by M ×N linear measurement matrix Φ (M < N). Since the
synthetic exact k-sparse signal is assumed in [2], then Ψ = I in
(1). The trivial approach for extending the method of [2] for natu-
ral images is assuming Ψ as a DCT domain or wavelet domain or
other ones. Our aim is to define some better transform domain in
which the reweighted minimization problem work well. To explain
our proposed approach, consider that X ∈ RNr×Nc represents the
compressible two dimensional signal like image matrix. We parti-
tioned the image into B × B blocks. Let Xj denotes j’th block
of the input image X through raster scanning and vectorized rep-
resentation of that as xj ∈ RB2×1. To find the mentioned trans-
form domain, we propose to use the vectorized representation of the
SVD of Xj . Note that the motivation behind the approach of [2]
was that the larger coefficients of the signal are penalized more than
smaller coefficients. Now, in this paper, we propose to penalize
the magnitude of the singular values of the multidimensional sig-
nal in a similar way. To do this, consider that Xj = UjΣjV

T
j ,

where Uj and Vj are real unitary matrices, and Σj is a diagonal
matrix with non-negative real diagonal elements. The diagonal en-
tries of Σj are known as the singular values of Xj . By some sim-
ple linear algebra, the vectorized version of Xj can be written as
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Fig. 1: PSNR and SSIM values vs sampling ratio for state-of-the-art algorithms and proposed algorithm with adaptive ε for Mondrian image.

xj = vec (Xj) = (Vj ⊗Uj) zj . Therefore, we transformed the
xj into singular value domain using Ψj = (Vj ⊗Uj). It is note-
worthy that Ψj depends on the signal to be recovered. Hence, we
use a solution of unweighted `1-minimization algorithm to compute
Ψj . Consequently, similar to (1), we propose to reconstruct the im-
age using the following reweighted optimization problem:

min
zj∈RB2×1

B2∑
i=1

log (|zj,i|+ ε)

s.t. yj = ΦB (Vj ⊗Uj) zj

(2)

where yj ∈ RMB×1 and ΦB ∈ RMB×B2

are given measurements
vector and measurement matrix and ε is also a positive parameter in
order to provide stability. Similar to [2], we use the popular and sim-
ple MM algorithm to solve the optimization problem of (2). Hence,
using some simple linear algebra, the optimization problem of (2)
becomes as follows:

z
(l+1)
j = argmin

∥∥∥W(l+1)
j zj

∥∥∥
`1

s.t. yj = ΦB (Vj ⊗Uj) zj

(3)

where W
(l+1)
j refers to a diagonal matrix with

{
w

(l+1)
j,i

}B2

i=1
as a

diagonal elements. Hence, for each i these weights are equal to
w

(l+1)
j,i = 1∣∣∣z(l)j,i

∣∣∣+ε
.

3. EXPERIMENTS

Some experimental results are presented to illustrate the perfor-
mance of the proposed method. Also, the SparseLab1 software is
used for solving the `1-minimization problems. We employ blocks
of size B = 16 for our simulations. We also assume that the max-
imum number of iterations is equal to lmax = 3. To investigate
the effectiveness of our proposed approach for reconstruction of
multidimensional signal, it is compared with four state-of-the-art
methods [2–4]. Since the parameter ε is effective for stability in-
credibly, this parameter should be adaptively selected based on the
singular value of the reconstructed signal in each iteration. By this
way there is no need to know the ε already. We should also note that
this parameter is chosen in a decreasing sequence in each iteration.

1http://sparselab. stanford. edu

Fig. 1 demonstrates the performance of the proposed algorithm
with adaptive ε for the Mondrian test image. As it is obvious, our
proposed SVD-based algorithm outperforms the other state-of-the-
art algorithms. As also expected, performance of the proposed
method is improved when the available number of measurements
increase. More simulations and discussions can be find in [7].

4. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a novel block-based weighted `1-
minimization algorithm based on SVD for reconstruction of the
compressible signals like natural images. In our algorithm weights
are updated based on the singular values and not based on the sig-
nal values. Besides, we develop our proposed algorithm on the
block-based compressed sensing to make it applicable to large-size
images. Finally, simulation results demonstrated the superiority of
our proposed algorithm for images. Since the eigenvectors of the
unweighted CS reconstructed signal is used to construct a sparsify-
ing basis in this paper, as a future work, one could propose better
way to approximate these eigenvectors.

5. REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[2] E. J. Candes, M. Wakin, and S. Boyd, “Enhancing sparsity by
reweighted `1 minimization,” Journal of Fourier analysis and
applications, vol. 14, no. 5-6, pp. 877–905, 2008.

[3] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for
compressive sensing,” in IEEE, ICASSP, 2008, pp. 3869–3872.

[4] I. Daubechies, R. DeVore, M. Fornasier, and C. Güntürk, “Iter-
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