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1. MOTIVATION

Self-similarity and operator self-similarity. An Rn-valued
signal {Y (t)} is said to be operator self-similar (o.s.s) when
it satisfies the scaling relation {Y (at)}t∈R

fdd
= {aHY (t)}t∈R,

a > 0, where fdd denotes the finite dimensional distributions,
H is called the Hurst matrix, and aH is given by the matrix
exponential

∑∞
k=0

logk(a) Hk

k! . O.s.s processes naturally gen-
eralize the univariate self-similar (s.s) processes, which have
been used to model a wide range of phenomena in hydrody-
namic turbulence [1], geophysics [2] and Internet traffic [3].
Gaussian case. The celebrated fractional Brownian motion
(fBm) is the only Gaussian, self-similar process with station-
ary increments [4]. The natural multivariate generalization of
fBm, called operator fBm (ofBm), was studied in [5, 6], and
several papers are now devoted to inferential methods for of-
Bm (e.g., [7, 8]).
Non-Gaussian case. Hermite processes are typically non
Gaussian, self-similar, stationary increment processes. They
appear as a consequence of non-central limit theorems. The
Rosenblatt process (or fractional Rosenblatt motion, fRm) cor-
responds to the Hermite process of rank 2 [9]. Statistical in-
ference for Hermite-type processes is particularly challeng-
ing: it was shown that wavelet-based estimators may display
nonstandard convergence rates and asymptotic distributions
in [10]. The modeling and statistical inference of multivari-
ate Hermite-type fractional signals, while of great importance
in applications, is an essentially unexplored research topic.
Outline. This thesis is dedicated to the problem of demix-
ing (multivariate) fractional signals, i.e., extracting a source
of independent s.s signals from a set of mixed signals. This
blind source problem has been little studied under the frame-
work of fractional stochastic processes. The work consider-
s mainly two types of signals: Gaussian and non-Gaussian
(Rosenblatt-type). The basic philosophy is to apply the same
wavelet-based demixing procedure to these two types of sig-
nals (Section 2). Large size Monte Carlo simulations are used
to illustrate that the finite-sample performance of the demix-
ing method is very satisfactory (Section 4). Moreover, the
asymptotic properties of the estimators will be studied for
Gaussian and non-Gaussian cases separately (Section 3).

2. METHODOLOGY

Blind source separation. For p = 1, . . . , P , let XHp be a
stationary-increment, s.s process with Hurst parameter Hp ∈
(0, 1). LetW be aP×P invertible matrix,H = (H1, . . . , HP )

T

and T denotes the vector transpose. Then, the process {Y (t)}
obtained by Y (t) = W (XH1(t), . . . , XHP (t))

T is o.s.s with
Hurst matrix HW = Wdiag(H)W−1. In practice, we only
observe the mixed process Y and need to estimate both W
and H .
Wavelet-based demixing procedure. The wavelet transform
of an o.s.s process Y (t) is defined by

RP ∋ D(2j , k) = 2−j/2
∫
R
2−j/2ψ(2−jt− k)Y (t)dt, (1)

j ∈ N∪{0}, k ∈ Z. The mother wavelet functionψ(t) is char-
acterized by its number of vanishing momentsNψ , i.e., the in-
tegerNψ such that ∀n = 0, . . . , Nψ−1,

∫
R t

kψ(t)dt = 0 and∫
R t

Nψψ(t)dt ̸= 0 [11]. The wavelet spectrum at scale 2j is
the positive definite matrix ED(2j , 0)D(2j , 0)∗ =: EW (2j),
and its natural estimator, the sample wavelet transform, is the
matrix statistic

W (2j) =
1

nj

nj∑
k=1

D(2j , k)D(2j , k)∗, nj =
ν

2j
, (2)

where ν is the number of sample points. By operator self-
similarity, we can write that

EW (2j) =WE1/2diag(22jH1 , . . . , 22jHP )E1/2W ∗ (3)

where E = diag(η(H1), . . . , η(HP )), and for i = 1, . . . , P ,

η(hi) = −σ2
i

∫
R2

ψ(t)ψ(t′)
|t− t′|2Hi

2
dtdt′.

Equation (3) illustrates the fact that the matrices EW (2j) can
be jointly diagonalized. In [12], we applied an exact joint di-
agonalization method to arrive at an estimator of the demixing
matrix Ŵ−1 . The algorithm can be cast in the form of pseu-
docode as follows:

Step 0: From one observation Y , sample wavelet vari-
ances WY (2

J1) and WY (2
J2) are computed as in Eq. 2 for

suitable J1 and J2 ;
Step 1: Set Θ =WY (2

J1)−1/2 ;
Step 2: Find eigenvectorsQ of the matrix ΘWY (2

J2)Θ∗ ;
Step 3: Compute the demixing matrix B := QΘ.



The estimator of the demixing matrix Ŵ−1 is defined to be
the output of the demixing algorithm. Then, the demixed pro-
cess {Z(t)} is obtained by Z(t) = Ŵ−1Y (t), where (entry-
wise) univariate wavelet regression can be applied to estimate
the Hurst parameters H1, . . . ,HP [13].

3. ASYMPTOTIC THEORY

Gaussian case. For p = 1, . . . , P , let XHp be a fBm with
Hurst parameter Hp ∈ (0, 1). Then, the mixed signal Y (t) =
W (XH1(t), . . . , XHP (t))

T is an ofBm. The sample wavelet
variance (2) was shown to be asymptotically Gaussian [7].
By building upon this result, we proved that the asymptotic
distributions of the eigenvalues/vectors of the sample wavelet
varianceWY (2

j) of Y (t), as well as that of the demixing ma-
trix estimator Ŵ−1 are Gaussian ([14]).
Non-Gaussian case (work in progress). Suppose everyXHp

is a fRm with Hurst parameter Hp ∈ ( 12 , 1), we define the
multivariate operator fractional Rosenblatt motion (ofRm) as
the RP - valued process Y (t) = W (XH1(t), . . . , XHP (t))

T .
We will study the asymptotic distributions of the wavelet vari-
ance and their eigenvalues/vectors, as well as that of the demix-
ing matrix estimator. In particular, the convergence rate ex-
pected to depend on the underlying Hurst eigenvalues. More-
over, we will also study the case where the unmixed, origi-
nal signals are independent fBms and fRms, i.e., it combines
Gaussian and non-Gaussian components.

4. SIMULATION PERFORMANCE

Broad Monte Carlo studies showed that the demixing method
works very well, over finite-samples, for both Gaussian and
non-Gaussian instances, or combinations thereof. This can be
illustrated based on the case where P = 4, the sample path
size is ν = 216, and the original signal is made up of 4 inde-
pendent s.s processes (2 fBms with Hurst parameters 0.2 and
0.4 and 2 fRms with Hurst parameters 0.6 and 0.8), the mixed
process was given by Y =WX (X is then a mixture of fBm-
s and fRms). Figure 1 shows boxplots for the Monte Carlo
distributions for each of the 4 × 4 entries of Ŵ−1 − W−1.
This indicates that W−1 is remarkably well estimated with
negligible biases. This results are reported for one arbitrarily
chosen matrix W , since the performance for all instances of
W was comparable. Monte Carlo studies not included further
indicate that the demixing method also works well for pure
ofBm and ofRm, and remains efficient even for relatively s-
mall sample size (down to ν = 210).
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Fig. 1. Boxplots for the 4× 4 entries of Ŵ−1 −W−1.
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