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I. SCALING LAWS IN NANOBIOPHYSICS

Improvements in light microscopy, fluorescence tech-
niques, nanoparticle synthesis and high-speed video have
ushered in a flurry of experimental activity [1]. Single
particle tracking has become a common tool in many
scientific areas, such as colloid physics [2], the study of
nanobiophysical systems, both in vivo and in vitro [7],
and the microrheology of complex fluids [3–6]. In par-
ticular, the latter is the application that motivates the
research in this dissertation.

Of primary concern in the analysis of particle path
data is the mean squared displacement (MSD) ⟨X2(t)⟩,
whereX is the tracer particle’s position. A basic dynamic
characterization of the latter is given by the relation

⟨X2(t)⟩ ∝ θtα, θ, α > 0, ξ := (log2 θ, α), (1)

where θ and α are called, respectively, the diffusivity con-
stant and the diffusion exponent. The parameter value
α = 1 corresponds to classical diffusion. If α ̸= 1, the
process X is called an anomalous diffusion, as statisti-
cally observed in most microrheological experiments.

The dominant statistical technique in the biophysi-
cal literature for estimating the parameters θ and α is
based on the so-named sample pathwise mean squared

displacement (M̂SD). For a tracer bead sample path
X(j), j = 1, . . . , n, the statistic

µ2(h) :=
1

n− h

n−h∑
j=1

{X(j + h)−X(j)}2 (2)

is the M̂SD at h, i.e., the statistical counterpart of the

MSD µ2(h) =
⟨
X2(h)

⟩
. An estimator (l̂og2 θ, α̂) is ob-

tained by means of the linear regression

log2 µ2(hk) = log2 θ + α log2(hk) + εk, k = 1, . . . ,m,
(3)

possibly over several independent particle paths, where
{εk}k=1,...,m is a random vector with an unspecified dis-

tribution. Plots of M̂SD curves as a function of the lag
h, often on a log-log scale, are widely reported as part of
diffusion analysis (e.g., [8, 9]).

One key interest in the microrheological study of com-
plex fluids is to test for heterogeneity, both within and
between fluid samples, by means of the observed diffusion
of embedded tracer particles. However, the biophysical
literature lacks reliable asymptotic results for the distri-

bution of the M̂SD. The purpose of this dissertation is
to provide a broad framework for the testing of fluid het-
erogeneity based on accurate mathematical results.

II. CONTRIBUTIONS

II.1. Asymptotic distribution of the pathwise
sample MSD

Consider the random vector(
µ2(h1), . . . , µ2(hm)

)
. (4)

In [10], we show that for a broad class of Gaussian,
stationary increment processes the convergence in dis-

tribution of the M̂SD occurs at different rates, and the
limiting distribution may be Gaussian and non-Gaussian
(Rosenblatt-type), all depending on the value of the dif-
fusivity exponent α. More precisely,(

n− hk

η(n− hk)ζ(hk)
(µ2(hk)−

⟨
X2(hk)

⟩)
k=1,...,m

d→ Z,

(5)
where n ≫ hk → +∞, k = 1, ...,m. The rates of conver-
gence in (5) are given by 0 < α < 3/2 : η(n) =

√
n, ζ(h) = hα+1/2;

α = 3/2 : η(n) =
√
n log(n), ζ(h) = h2;

3/2 < α < 2 : η(n) = nα−1, ζ(h) = h2.
(6)

II.2. WLS estimator of α with bias correction

To test heterogeneity more accurately, we would like
to increase the performance of α̂, namely, reduce it vari-
ance and bias. Research shows that the variances of
log2 µ2(hk) increases exponentially with respect to hk.
For this reason, we consider a weighted, rather than ordi-
nary, least squares approach (WLS vs OLS) to the linear
model in (3). From the fact that [11]

⟨log2 µ2(h)⟩ ̸= log2 ⟨µ2(h)⟩ = α log2(h) + log2(θ),

we correct the bias of each term log2 µ2(·) by subtracting
the expectation of the second term of the Taylor expan-
sion of log2 µ2(h). This idea is presented below in the
form of pseudo-code.

Input: observed particle paths

Step 1: compute the estimator α̂OLS

Step 2: correct the bias of log2 µ2(·) and choose weights

w based on α̂OLS

Step 3: compute the estimator α̂WLS and θ̂WLS

The comparative performance of the WLS and OLS
estimators is illustrated in FIG 1 and 2 in terms of
mean squared error, variance, and bias. The combina-
tion of finite-sample correction and asymptotic results
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FIG. 1. α̂OLS v.s. α̂WLS
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FIG. 2. α̂WLS with bias correction

also leads to accurate confidence intervals and hypothe-
sis test statistics by means of an approximation of σ2

α̂WLS

(see FIG 3).
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FIG. 3. standard deviation of α̂WLS: Monte Carlo simulation
vs theoretical value

III. EXPECTED CONTRIBUTIONS

III.1. MSD-based heterogeneity testing

Assume ν1 and ν2 paths are obtained from fluids I and
II, respectively. We will build upon the asymptotic and
finite-sample frameworks described in Section II.1 and
II.2 to construct an encompassing methodology for the
testing of intra- and inter-sample heterogeneity. This will
consist of:
(i) testing the null hypotheses (equalities between differ-
ent paths’ parameters from a fluid)

H0,i : ξ1,i = ξ2,i = · · · = ξνi,i, i = 1, 2, (7)

where a chi-square test can be applied.
(ii) testing the null hypothesis

H0 : ξI = ξII, (8)
for which a z-test can be applied.

III.2. Wavelet-based heterogeneity testing

We will also invertigate the testing of fluid heterogene-
ity by means of wavelet techniques. A great advantage
of wavelet-based estimation is that, unlike the result in
Section II, its limiting distribution is Gaussian and rate
of convergence is

√
n if the number of vanishing moment

of wavelet is no less than 2. However, a potential draw-
back (shown by numerical simulation) of wavelet-base es-
timator is its mean squared error increases if number of
vanishing moment increases. We will compare α̂wave and
α̂
M̂SD

in terms of their finite-sample and asymptotic per-
formance in the testing of heterogeneity.
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