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I. INTRODUCTION

Parameter estimation has always played a key role in
signal processing. The conventional methods are based on
vector or matrix modeling since the completeness of matrix
theory. However, the real-world signal often has the higher-
order tensor structure. For instance, the color image can be
described as a third-order tensor data including RGB color and
coordinate information; similarly, a MIMO channel transfer
function can be formulated as a higher-order harmonic signal.
Such tensor signal maintains certain structural information
among each mode, which would inevitably lost by dimension
reduction process. In order to utilize the structural informa-
tion, tensor decomposition framework has been introduced
into signal processing in recent years [1]. Tensor modeling
possesses many benefits, e.g., Tucker decomposition (TKD)
can achieve a high efficiency in data compression [2]; the
uniqueness of canonical polyadic decomposition (CPD) will
facilitate the signal identification [3]. In this research, two
kinds of parameter estimation problems have been investigated:
1. Arrival angles estimation in array signal processing; 2. SAR
imaging for block sparse scattering targets.

II. ARRIVAL ANGLES ESTIMATION BY CPD MODELING

This research focuses on the two-dimensional angle-of-
arrival (2D-AOA) estimation based on the multiple invariance
feature and uniqueness of CPD, and exploits the cross corre-
lation matrix (CCM) information of L-shaped array manifold
to achieve pair-matching for estimated angles [4]. In consid-
eration of the Vandermonde structure, the received signal of
each axis can be segmented into P parts,

Xp = ADp (Ψ )ST
, p = 1, 2, ..., P, (1)

where S ∈ CN×K is the source signal, A ∈ CM ′
×K is

the sub-steering matrix and Dp (Ψ ) denotes a diagonal matrix
consisted by the pth row of factor matrix Ψ ∈ C

P×K . It is
found that (1) matches the CPD model [1] and Xp can be
considered as the pth slice matrix of received signal tensor

X ∈ CM ′
×N×P . If combined all slices into a rectangular

matrix, (1) can be written as X(1) = (Ψ ⊙ S)AT , where
⊙ denotes the Khatri-Rao product [1]. Hence it is possible to
estimate the spacial frequency by using tenor decomposition.
A typical algorithm to handle such problem is alternating least
squares (ALS), which updates one factor with the others fixed
by LS approach until the convergence condition is met. By
introducing the Vandermonde feature as constraint, the sub-
steering matrix estimation problem can be formulated as

min
∥

∥

∥
X(1) − (Ψ ⊙ S)AT

∥

∥

∥

2

F
, s.t. A2 = A1D2 (Ψ ) , (2)

where A1,A2 consist of the first and last (M ′ − 1) rows
of A, respectively. Then the estimate of sub-steering matrix

Â can be obtained. As a result, the spacial frequency can
be calculated by typical subspace methods [5]. The CCM
information is introduced to accomplish the pair-matching
between the estimates of azimuth and pitch angles [6]. It
is deduced that the uniqueness condition of this scenario is
min (M ′,K) + min (P − 1,K) > K + 1, indicating that
the uniqueness will be guaranteed even if the number of
rows in steering matrix is less than the number of sources,
which makes CPD-based method more flexible than classic
subspace methods on applicability. For the coherent situation,
the subspace of A can still be obtained by TKD modeling.

The RMSE curves of the proposed algorithm and reference
methods are shown in Fig. 1. It is demonstrated that the
proposed method is superior to the other methods. Note that
both tensor-based methods achieve lower RMSE than the
classic subspace methods. Besides, compared with the standard
CPD algorithm, the proposed method performs better even in
severe noise situation.
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Fig. 1. RMSE versus SNRs (2D-AOA estimation).

III. SAR IMAGING BY TKD MODELING

Sparse reconstruction approach has been applied in syn-
thetic aperture radar (SAR) imaging over the last decade,
which can obtain necessary information by the sampling rate
much lower than Nyquist limit [7]. However, the previous work
only considered the sparsity of the signal without utilizing the
structural characteristics of targets. In real-world applications
of SAR imaging, the target scatterers always possess the block
sparse feature. To ameliorate the above problems, we introduce



a tensor decomposition framework which can exploit such
geometry feature and maintain a lower resource requirement.

For a point scattering SAR imaging model, the phase
history need to achieve decoupling by interpolation proce-
dure. In consideration of the Kronecker structure in steering
matrix, the received signal can be represented as a TKD
model, y = (DN ⊗DN−1 ⊗ ...⊗D1) s, where s is the
scattering coefficients, Dn is the factor matrix including
azimuth, pitch angles and frequency information. Since the
target scatterers usually clustered together as blocks, we can
reformulate the scattering coefficients estimation as multi-
way block sparse reconstruction problem. Define Bn =
Dn (:,In), where In =

[

i1n, i
2
n, ..., i

Kn

n

]

is a subset of index
for mode-n. Then the received signal can be rewritten as
ŷ = (BN ⊗BN−1 ⊗ ...⊗B1) snz , where snz ∈ RK is the
vectorization of all nonzero coefficients. As a consequence, the
solution of the problem can be given as

snz = argmin
u

‖(BN ⊗BN−1 ⊗ ...⊗B1)u− y‖
2
2 . (3)

Besides, a more efficient calculation step can be utilized by
introducing Cholesky decomposition [8]. All nonzero elements
of core tensor will be included in a subset of index during
iteration and the expected scattering coefficients can be re-
covered as well. The algorithm complexity analysis indicates
that the proposed algorithm can achieve convergence with
much fewer iterations comparing with the classic l0 technique.
Moreover, it has been proven that the reconstruction method
using Kronecker structure has much less severe requirements
for coherence than the classic matching pursuit methods with
the same sparsity, and it is deduced that the former has the
higher successfully recovery bound.

The realizations of SAR imaging based on practical mea-
sured data are shown in Fig. 2. The observation target is a
crawler-type engineering vehicle. The data is collected from
three pitch central angles: 30◦, 40◦, and 50◦, and the sparsity is
set to 200. The reference methods are PFA, OMP and CoSaMP.
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Fig. 2. SAR imaging of different observation angles.

The RMSE curves of the proposed algorithm and reference
methods are shown in Fig. 3. The solid lines and dashed
lines represent the simulations for 10 scatterers and 50 scat-
terers, respectively. It is demonstrated from the results that
the performance of the proposed method is superior to the
others for both the cases of small number and large number

of scattering points, especially at low SNR. In addition, the
computational cost experiments indicate that the proposed
method could run not only faster one order of magnitude than
CoSaMP, meanwhile maintain a better performance, which has
significance in practical applications.
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Fig. 3. RMSE versus SNRs for different number of scatterers (SAR imaging).

IV. CONCLUSION AND FUTURE WORK

This Ph.D. work mainly investigates the parameter esti-
mation algorithms based on tensor decomposition. Two ap-
plication fields, array signal processing and SAR imaging,
have been included in this research and achieved the expected
results. The future work will focus on the multi-parameter
estimation of polarization sensitive array and acoustic vector
hydrophone based on block term decomposition.
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