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ABSTRACT

While convex optimization for low-light imaging has received
some attention by the imaging community, non-convex op-
timization techniques for photon-limited imaging are still in
their nascent stages. In this thesis, we developed a stage-
based non-convex approach to recover high-resolution sparse
signals from low-dimensional measurements corrupted by
Poisson noise. We incorporate gradient-based information
to construct a sequence of quadratic subproblems with an
`p-norm (0 ≤ p < 1) penalty term to promote sparsity. The
proposed methods lead to more accurate and high strength
reconstructions in medical imaging applications such as bio-
luminescence tomography and fluorescence lifetime imaging.

Index Terms— Photon-limited imaging, Poisson noise,
`p-norm, time-dependent bioluminescence tomography, fluo-
rescence lifetime imaging

1. INTRODUCTION

Acquisition of a sparse signal from an undersampled set
of linear measurements is the main problem of compressed
sensing (CS). Within the CS community, minimizing the `1-
penalized least-squares problem also known as LASSO, is
the most popular approach for sparse signal recovery. The
least-squares data-fidelity term assumes a Gaussian noise
model. However, there are many real world applications that
do not follow Gaussian noise statistics. For an instance, when
the number of observed photon counts is relatively low at
the camera detector, they follow a Poisson distribution. This
phenomena can be seen in a variety of different applications
including atmospheric imaging, astronomy, night vision, and
medical imaging such as bioluminescence tomography and
fluorescence lifetime imaging. Accurate recovery of sparse
signals from Poisson noise corrupted measurements is noto-
riously more difficult than the LASSO problem. It requires
the development of new methods and algorithms that exploit
the sparsity of the signal and model the system noise more
accurately. In this work, we explicitly model noise using
Poisson statistics and further enforce sparsity and structure
in the solution using the `p-norm (0 ≤ p < 1), which can
be viewed as a bridge between the convex `1-norm and `0
counting seminorm.

This work was supported by NSF Grant CMMI-1333326.

Significance: We build upon the recent Sparse Poisson Inten-
sity Reconstruction ALgorithm (SPIRAL) [1] framework for
solving photon-limited imaging problems. Our approach is
different in the following manner: (1) We incorporate a non-
convex `p-norm regularization to promote further sparsity in
the solution, (2) the p-value can be tuned to highlight differ-
ent structural properties of the signal, and (3) we solve time-
dependent sparse recovery problems in several steps; in par-
ticular, we recover the support of the signal using the time-
averaged data and reconstruct the signal intensity using the
time-dependent data.

2. PROBLEM FORMULATION

The arrival of photons at the charge-couple device (CCD)
camera is modeled by the Poisson process: y ∼ Poisson(Af∗),
where f∗ ∈ Rn

+ is the true signal or image of interest,
A ∈ Rm×n

+ is the linear projection matrix (m � n), and
y ∈ Zm

+ is a vector of observed photon counts. Under the
Poisson process model, f∗ is estimated by minimizing the
following constrained optimization problem:

f̂ = minimize
f∈Rn

Φ(f) ≡ F (f) + τ pen(f)

subject to f � 0, (1)

where F (f) is the negative Poisson log-likelihood function
F (f) = 1TAf −

∑m
i=1 yi log(eTiAf + β), where 1 is the m-

vector of ones, ei is the i-th canonical basis unit vector, β > 0
(typically β � 1), pen : Rn → R is a sparsity-promoting
penalty functional, and τ > 0. In this work, we consider
pen(f) as ‖f‖pp (0 ≤ p < 1) to enhance the sparsity of the
reconstruction better than the `1-norm regularization [1].

We solve the `p-norm penalized optimization problem (1)
by minimizing a sequence of quadratic models. In particular,
the resulting subproblems are uncoupled into a sequence of
scalar minimization problems in the general form:

f∗s = arg min
f≥0

1

2
(f − s)2 + λ|f |p, (2)

where s and λ scalars are known [2]. The resulting scalar
optimization problem (2) is solved using the generalized soft-
thresholding function – a zero finding method such as New-
ton’s method or fixed-point iteration method is used along
with a threshold value to find the global minimum of (2) [3].



3. APPLICATIONS
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Fig. 1. Schematic diagram of the time-dependent biolumi-
nescence tomography. CCD camera captures the decaying
photon-count measurements at all four boundaries.

Time-dependent bioluminescence tomography: In time-
dependent bioluminescence tomography (BLT), we seek to
recover the decaying light sources within a tissue sample
from boundary measurements captured by a CCD camera
(see Fig.1). Here, we propose a novel two-stage method
to solve the ill-posed time-dependent BLT inverse problem
[4]. Unlike previous methods, the first stage of our approach
uses our nonconvex Poisson noise-based sparsity promoting
method to recover the support using the time-averaged data.
In the second stage, we use the determined support from stage
one to recover the characteristic time decay using the time-
dependent data. In the experiment with 5% Poisson noise
corrupted boundary measurements, we recovered the support
accurately and the characteristic decay rate is approximated
as 1.53, while the true decay rate is 1.50 (see Fig. 2).
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Fig. 2. Spatial support of two group of bioluminescent
sources from the time-averaged data. (a) True locations of
the sources. (b) Reconstructed support using our nonconvex
sparsity promoting approach. Note that there is a spurious
support in the reconstruction which is marked by red color
box.

Fluorescence lifetime imaging: To solve the fluorescence
lifetime imaging problem using the CCD camera measure-
ments with lower exposure time, we propose a three-stage
based method [5]. Similar to the BLT approach, we recover

the support of the fluorophores in the first-stage using the
time-averaged measurements. In the second stage, we recover
the excited fluorescence source amplitude with the given sup-
port and time-dependent data (see Fig. 3). In the third-stage,
we apply a nonlinear least-squares solver to recover the flu-
orophore concentration and the lifetime τ . We evaluate the
propose method using two experiments: (1) with two point
sources, τ ≈ 5.64, (2) with the two island of sources, τ ≈
5.76 (true τ∗ = 5.7 for both experiments).

Fig. 3. Fluorescence point source amplitude reconstruction
with the given support and 7.5% Poisson noise corrupted
time-dependent measurements.

4. CONCLUSION

We have developed and implemented a fast stage-based non-
convex sparsity promoting method that leads to more accu-
rate and high strength reconstructions with the applications
to medical imaging. Results for applications to real phantom
data measurements in fluorescence molecular tomography are
underway.
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