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1. INTRODUCTION

Hyperspectral sensors record the light intensity beyond the
visible spectra in hundreds of narrow contiguous bands. Im-
ages are characterized by a high spectral resolution but a
low spatial precision due to sensors constraints. A crucial
step called unmixing consists of decomposing each pixel as a
combination of pure spectra, called endmembers. Endmem-
bers act as fingerprints, improving the ability to analyse a
scene.

Under reasonable assumptions, pixels are expected to
live in a lower dimensional subspace whose dimension is
intimately linked to the number of endmembers. The identi-
fication of this subspace yields gains in computational time,
complexity and in data storage. However, determining both
the relevant subspace dimension (e.g. the number of end-
members) and a suitable representation is a difficult problem.
Existing methods are often parametric, such as thresholding
the eigenvalues of Principal Component Analysis (PCA),
and using eigenvectors as a subspace base (see [!] for a re-
view). My Ph.D. aims at exploring Bayesian nonparametric
inference to tackle these tasks.

We have already proposed a Bayesian formulation of
anti-sparse coding [2, 3], primary motivated by the search of
representations for endmembers. Anti-sparse representations
aim at spreading the energy over all components uniformly.

In Data analysis, many methods exist to extract the un-
derlying subspace. Model selection methods include criteria
that quantify compromises between reconstruction and com-
plexity (e.g. AIC or BIC). PCA also implicitly permits a di-
mension reduction by projecting observations onto a subset
of orthonormal vectors. A probabilistic formulation of PCA
has been proposed through factor analysis [4]. Existing ex-
tensions rely for instance on Laplace [5] or variational [6]
approximations of the posterior distribution.

In this work, we investigate the use of Bayesian non-
parametric inference associated to directional statistics to ex-
plore the set of subspaces. The goal is to avoid an arbitrary
thresholding of eigenvalues as often done for PCA. We de-
rive an empirical posterior distribution of bases of the la-
tent subspace, where coefficients, e.g. projections, have been
marginalized out. We proposed to use MCMC methods to
sample according to this posterior and approximate estima-
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tors. In addition to subspace estimation, different indicators
permit to assess the relevance of inferred projectors.

2. METHOD

2.1. Model

Lety = [y1...yp|" denote a D-dimensional observation
vector. We propose the following latent factor model

y=P(zoOz)+n ey

where P is an orthonormal basis of R” (e.g. the eigenvector
of aclassical PCA), z is a binary vector, « is the set of coeffi-
cients and ® denotes the term-wise product. The vector n is
a white Gaussian noise of variance o2 leading to a quadratic
discrepancy measure. Let Y, X and Z denote the matrices
resulting respectively from the concatenation of all vectors
y, x and z.

The aim is to estimate an orthonormal basis of a subspace
of dimension K < D that is not fixed in advance, to avoid
the choice of a threshold. To that purpose, a uniform distri-
bution over the set of orthonormal matrices in dimension D
is elected as prior distribution over the projectors P. We pro-
pose to use the binary property of Z to favor a parsimonious
use of the components, in the spirit of a dimension reduction.
The Indian buffet process (IBP) [7] is chosen as a prior distri-
bution over the binary coefficients. The Indian buffet process
(IBP) [7] can be seen as a distribution over the set of binary
matrices with a potentially infinite number of rows. It penal-
izes large matrices. Moreover, the number of active rows of
Z is limited to D because of the orthogonal constraints. We
expect that the regularizing effect of the IBP still holds in low
dimensions (K < D).

Independent Gaussian prior distributions are assigned to
projection components gathered in X. We choose to scale
the variance in each direction to the noise. Thus, the variance
o? in a direction is expressed through o7 = §202, where 47
correspond to the ratio between the eigenvalues of PCA and
the noise variance. All hyperpriors are chosen as non infor-
mative as possible, such that no parameter tuning is required.

2.2. Algorithm

Since the posterior distribution is too complex to analyt-
ically derive Bayesian estimators, a Monte Carlo Markov
Chain (MCMC) sampler is derived to approximate the
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Fig. 1. Posterior distributions of K (a), scale factors 62 (b) and dispersion of the projection measured through PéStPtme ©).

marginal posterior distribution of the set of parameter 8 =
P.Z,0% (57)

p(0|Y>=/p<0,X|Y>dX @

where the projections X are integrated out. We thus ob-
tain estimates of the orthonormal basis of a subspace of size
K < D with their corresponding eigenvalues (energies), and
K, the number of selected components. The MCMC algo-
rithm consists of a Metropolis-within-Gibbs sampler where
parameters are iteratively sampled according to their respec-
tive conditional posterior distribution.

3. EXPERIMENTAL RESULTS

We propose to illustrate the relevance of the method on a sim-
ple simulated dataset. The following experiment is repeated
50 times. N = 100 observations of dimension D = 16
through the generative model y = Px + n where P is a
random orthonormal base where only K = 4 components
are active, the coefficient x are Gaussian whose variance are
proportional to 271, e.g. [5002, 2502, 1602, 120] and scale
to the noise variance 02 = 0.1. We run for each simulation
1000 iterations including 50 burn-in iterations.

Figs. 1a to 1c plot three posterior distributions resulting
from the concatenation of all iterations. One can see that the
first four scale factors &7 are correctly recovered (Fig. la)
with low relative variance compared to factors that corre-
spond to inactive ones. This trends is confirmed by the pos-
terior distribution of the alignment of the true P with the
estimated ones (Fig. 1b). The first four orthogonal directions
have an alignment in average higher than 0.7 while all the
others are close to 0.23. Note that 0.23 corresponds to the
expected value (represented by the horizontal dashed line) if
the component is uniformly distributed on the subspace or-
thogonal of the previous ones. These results agree with the
Maximum A Posteriori estimators extracted from the poste-
rior distribution of K (Fig. lc).

4. CONCLUSION

This Ph.D. work proposes a new Bayesian nonparametric
framework to infer the intrinsic dimension of a set of ob-
servations. The MCMC framework permits to build a com-
prehensive statistical description of the solution through pos-
terior distributions. These indicators could lead for instance
to statistical test to help decision making.

Future works include both numerical and methodological
investigations. We plan to explore the ability of the algorithm
to recover components whose corresponding energy is below
the average noise level (i.e., where 52 < 1). The approach
could be validated through machine learning tasks on simple
datasets. Conversely, we plan to incorporate the dimension
reduction into a Bayesian formulation of these tasks, such
as linear classification. Such methods may improve perfor-
mances in hypespectral unmixing, where the dimension re-
duction plays a key role as explained Section 1.
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