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Abstract 

In this research, a structural maximum a posteriori (SMAP) 

speaker adaptation method to adpat Speaking Rate dependent 

Hierarchical Prosodic Model (SR-HPM) for generating a 

Personalized SR-TTS is discussed. The adaptive SR-HPM is 

formulated based on MAP estimation with a reference SR-

HPM serving as an informative prior. The prior information 

provided by the reference SR-HPM is hierarchically organized 

by decision trees. Spectrum model is bulit via Speaker 

Adaptation Training which incorporates an SMAP criterion 

which uses tree structures of the distributions to effectively 

cope with the control of the hyperparameters. Combining 

context-dependent linguistic features and prosody-dependent 

features generated by adaptive SR-HPM for personalized-

spectrum modeling. The results of objective and subjective 

evaluations showed that the proposed method not only 

performed slightly better than the maximum likelihood-based 

model in the observed SR range of the target speaker’s data, 

but also was much better in the unseen SR range. 

Index Terms— speaker adaptation, hierarchical prosodic 

model, prosodic-acoustic features, Mandarin TTS 

1. Introduction 

In the past, we have developed a Speaking Rate-Controlled 

Mandarin TTS system (SR-MTTS) using a large speech 

corpus containing utterances of various SRs (0.15~0.3 sec/syl) 

of a female speaker. An SR-HPM was trained and used in the 

TTS system to generate prosodic-acoustic features for any 

given SR. In order to construct a personalized TTS system , 

two issues are raised:1) sparseness of adaptation data due to a 

large space of the model parameters, and 2) poor estimation of 

prior variances due to the fact that only one Mandarin SR-

HPM is trained from the speech corpus of one speaker. 

Since the speech of a speaker can be generally characterized 

by its spectrum and prosody. Many speaker adaptation 

techniques have been proposed in the past. Among them, 

maximum likelihood linear regression (MLLR) and maximum 

a posteriori (MAP) are two popular approaches for spectral 

model adaptation. Actually, there are very few literatures 

relating to speaker prosody adaptation. This is owing to the 

scarcity of sophisticated prosodic models used in TTS. 

Another approach, MAP-based prosody adaptation method,  

was reported to adapt the condition random field (CRF)-based 

break prediction model of a source speaker to one for a target 

speaker. Its prosody adaptation is only fair because of using 

simple human-labeled break tags to adjust the decision tree, 

which generates log-F0 and state duration, without the help of 

any prosodic model. In this research, a structural MAP (SMAP) 

adaptation method is proposed to tackle these two issues. It 

organizes the model parameters of the SR-HPM into 

hierarchical structures so as to effectively perform an MAP-

based speaker adaptation given with a new speaker’s dataset 

with utterances covering a narrow SR range. 

2. Overview of Personalized TTS system  

Fig.1 displays a block diagram of Personalized TTS system. 

Using an input text and a given speaking rate x, the system 

first predicts the break sequence *
B  by using the break-syntax 

sub-model ( | , , )BBL λP x  of the adaptive SR-HPM. It then 

predicts the three prosodic state sequences ( * * *, ,p q r ) by using 

the prosodic state sub-model ( | , , )PP B λP x and the prosodic 

state-syntax sub-model ( | , )PLP L λP  of the adaptive SR-HPM. 

Then, it uses *
B , ( * * *, ,p q r ), x, and linguistic features L to 

generate the four prosodic-acoustic feature sequences 

{ , , , }* * * *
sp sd se pd  by using the syllable prosodic-acoustic sub-

model ( '| , , , ),XX B P L λP  the syllable juncture prosodic-

acoustic sub-model ( ' '| , , )YZY , Z B L λP  and denormalization 

functions (inverse NFs) of the adaptive SR-HPM. Lastly, it 

produces the synthetic speech using the spectral features, 

generated by the constrained structural maximum a posteriori 

linear regression algorithm (CSMAPLR), and the prosodic-

acoustic features * * * *
A={sp ,sd ,se ,pd } . 
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Fig. 1. A block diagram of Personalized TTS system. 

The speaker adaptation of SR-HPM starts with the adaptation 

of NFs by the MAP linear regression (MAPLR) method using 

the NFs of the reference speaker (REF NFs), and the prosodic-

acoustic features A and speaking rates x of the target speaker’s 

speech corpus. A is then normalized using the adapted NFs. 

Then, the adaptation of SR-HPM is performed by the Adaptive 

Prosody Labeling and Modeling (A-PLM) algorithm using the 

normalized features { , , , }A sp sd se pd      and the REF SR-

HPM. The structure MAP (SMAP) method is employed in the 

A-PLM algorithm to adapt parameters of sub-models. 

3. Adaptation of SR-HPM 

The adaptive SR-HPM is formulated based on the MAP 

estimation with the reference SR-HPM serving as an 

informative prior. It is designed to simultaneously estimate the 



model parameters of target SR-HPM, 
*
λ , and label the 

prosody tags of target speaker, 
*

T , given with prosodic-

acoustic features, 'A , linguistic features, L , and SR, x :  
* *

, ,

,

,

, argmax ( | , ', , ) argmax ( , , ', , )
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where ( , ' | , , )T A L x λP  is likelihood function and ( )P λ  is 

the prior probability for the SR-HPM parameters.  

3.1. The Adaptive PLM algorithm 

The A-PLM algorithm is specially designed for training the 

parameters of SR-HPM in an adaptation fashion. Since the 

SR-HPM consists of many sub-models, a sequential 

optimization procedure is conducted to maximize each part of 

the model parameters as described as follows: 

Step 1: Set all the parameters of SR-HPM as their prior means. 

Step 2: Find the optimal break type sequence using the 

syllable-juncture prosodic-acoustic model and the SR-

dependent break-syntax model by 
* argmax ( ', '| , , ) ( | , , )B Y,Z BB Y Z B L λ BL x λP P

                  (2) 

Step 3: Obtain the optimal prosodic state sequence using the 

syllable prosodic-acoustic and the prosodic state models by 
* * *argmax ( '| , , , ) ( | , , )P X PP X B P L λ PB x λP P                     (3) 

Step 4: Adapt the sets of 
Xλ , Y,Zλ , 

Bλ , and 
Pλ by SMAP:  
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Step 5:  Find the optimal break type sequence using all sub-

models of the SR-HPM by 

* ( '| , , , ) ( ', '| , , )
argmax

( | , , ) ( | , , )
X Y,Z

B P B

X B P L λ Y Z B L λ
B

P B x λ B L x λ

P P

P P
 


  

               (5) 

and update break type tags by *B B  

Step 6:  If convergent, then go to Step 7; or go to Step 3. 

Step 7: Adapt the prosodic state-syntax sub-model 
PL
λ   by  

* argmax ( | , ) ( )
PLPL λ PL PL

λ P L λ λP P
 

4. Experimental Results 

Effectiveness of the proposed method was examined by 

simulations on the speech corpus of a female target speaker. 

The adaptation data contained 37 paragraphic utterances with 

4,268 syllables uttered in a range of slow SR, i.e. 0.26~0.3 

sec/syl. The testing corpus contained 12 utterances with 1,461 

syllables. The average length of these utterances was 117 

syllables. 

4.1.  Prosodic/Spectral Feature Prediction 

Table I shows the root mean squared errors (RMSEs) of the 

PAFs w.r.t. different adaptation data sizes. It is found that the 

RMSEs for the four types of PAFs are approximately the same 

for the proposed SMAP method, while they decrease gradually 

as the adaptation data size increases for the ML method. As 

seen from Table II, PD labels is more efficiently for spectral 

feature generation than CD linguistic features. MCDs of 6.137, 

5.905, 5.910, 5.766, 5.734 and 5.477 are achieved by the 

CSMAPLR method using PD features, while they are 6.336, 

5.909, 5.997, 6.051, 5.972 and 5.822 for the case of using CD 

features. 
TABLE I: PROSODY PREDICTION ERRORS (RMSES) OF FOUR 

PROSODIC-ACOUSTIC FEATURES FOR THE ADAPTIVE SR-HPM TRAINED 

BY USING ADAPTATION DATA OF 5 DIFFERENT SIZES. THE TEST DATA 

SIZE IS 1,461 SYLLABLES. 

Spk. Female (test data syl# 1,461) 

 The proposed SMAP method ML-based HTS method 

syl# sp 

(logHz) 

sd 

(ms) 

se 

(dB) 

pd 

(ms) 

sp 

(logHz) 

sd 

(ms) 

se 

(dB) 

pd 

(ms) 

1,417 .173 8.6 3.23 11 .229 11.4 4.23 34 

2,000 .171 8.6 3.25 10 .216 10.1 4.36 18 

2,661 .172 8.5 3.23 11 .224 9.8 4.27 16 

3,348 .171 8.4 3.22 11 .206 9.3 3.38 11 

4,268 .170 8.4 3.24 10 .213 8.6 3.3 11 

 

TABLE II : THE MEL-CEPSTRAL DISTORTION (MCD) OF SPECTRAL 

FEATURE FOR DIFFERENT CONTEXT LABELS ;  (UNIT: DB) 

syl# Context-Dependent 

linguistic features 

Prosody- Dependent 

features 

1,417 6.336 6.137 
2,661      5.997 5.910 

4,268 5.822 5.477 

 

4.2. Subjective Test  

 
                Fig. 2. An example of break type predictions and their 

pause durations for 8 SRs by the Personalized TTS. 

 

Fig. 2. shows the syllable duration estimation. As shown in the 

figure, syllable durations are larger before short- and long-

pause breaks(B2-2/B3/B4) to demonstrate the pre-boundary 

lengthening effect. These results match with the prior 

knowledge about the relationship between syllable juncture 

break pause and speaking rate. 

TABLE III: EXPERIMENTAL RESULTS OF PREFERENCE TEST 

SR (sec/syl) 0.15 0.23 0.3 

Prefer SMAP (%) 70.5 77.0 92.7 

Prefer ML  (%) 10.8 18.8 7.3 

Equal  (%) 18.8 4.2 0.0 

 

As shown in Table III , the average preference score (95% 

confidence intervals) of the SMAP method is 80.06 

(78.6~81.5), while that of the ML method is 12.3 

(11.55~13.04). 

5. Conclusion 

The proposed adaptation method simultaneously labels 

prosody tags on all utterances of the adaptation corpus and 

adapts model parameters of the SR-HPM for a target speaker 

with the help of the existing Mandarin SR-HPM. No human 

prosody labeling is needed. It requires no parallel speech 

corpora for speaker prosody adaptation and generate an 

adaptive SR-HPM to cover the whole SR range by using 

adaptation data that have a narrow SR coverage. 
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