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Overview

The ability of different sensors to provide complementary
views of complex systems has driven the collection of data
from multiple sources for use at the same time. The fields
where such data is exploited include: weather and financial
analyses, video surveillance, and biomedical imaging. This
data can be either from sensors of the same type, referred
to as multiset data, or from sensors of different types, as in
multimodal data. In both cases, full utilization of the common
information across datasets requires a joint analysis. However,
in many applications, little a priori information about the true
latent sources is available. This stimulates the use of data-
driven blind source separation methods, such as: independent
component analysis (ICA) [1], joint ICA [2], [3], and group
ICA [4], which minimize the assumptions placed on the data
through the use of simple generative models, for the analysis of
multiset and multimodal data. The success of these methods
depends on the validity of their modeling assumptions, and
care must be taken before applying a method to a particular
problem. Our current research has been the development of
novel data-driven methods for performing exploratory analyses
on multiset as well as multimodal data and the determination
of the effects of modeling assumptions on the fusion of
medical imaging data.

Current Results

Order Selection for Multimodal Data, See reference: [5]

Since most medical imaging data is of high dimension and
quite noisy, reliable determination of a signal subspace, or
order, is critical in order to avoid over-fitting in the model.
However, most order estimation techniques are only valid for
a single dataset, for example [6], and almost none are designed
for the sample-poor regime inherent to multimodal data fusion.
In addition, the potential success of any data fusion method
is dependent on commonalities shared across datasets, making
it desirable to determine the strength of these commonalities
prior performing fusion. In this work, we

- Developed a method to jointly estimate the order of
multimodal datasets as well as their commonalities named
principal component analysis and canonical correlation
analysis (PCA-CCA);

- Demonstrated that PCA-CCA has superior performance
to traditional methods on simulated data;

- Applied PCA-CCA to pairwise combinations of func-
tional magnetic resonance imaging (fMRI), structural
magnetic resonance imaging (sMRI), and electroen-
cephalogram (EEG) data drawn from 14 patients with
schizophrenia and 22 healthy controls;

- Determined that the sMRI and EEG datasets share the
least commonality, whereas the fMRI and sMRI datasets
share the most;

- Showed that the level of commonality obtained by PCA-
CCA is predictive of the degree of significance found
for components generated using canonical correlation
analysis as shown in the Table I.

TABLE I: Number of significant components at two signif-
icance thresholds and PCA-CCA estimated common compo-
nents, for the three pairwise combinations of modalities.

fMRI-sMRI fMRI-EEG sMRI-EEG
Significant components, p = 0.05 2 1 1
Significant components, p = 0.1 5 4 2

Common components, PCA-CCA 4 3 2

Transposed Independent Vector Analysis for Data Fusion,
See references: [7]–[10]
Though flexible and able to minimize the assumptions placed
on the data, the success of data-driven blind source sepa-
ration methods, such as independent vector analysis (IVA)
[11], is intimately tied to the legitimacy of their modeling
assumptions. This is particularly true for methods used for
the fusion of neural imaging data, since improperly applied
techniques may lead to incorrect conclusions and thus hinder
the understanding of neural processes. This stimulates the
development of novel blind source separation methods that
can alleviate the limitations of previous multivariate methods
and the exploration of the effects of modeling assumptions on
the result. To this end, we

- Developed a novel method, transposed independent vec-
tor analysis (tIVA), for the fusion of multimodal neuro-
logical data and exploratory data analysis;

- Applied tIVA to fMRI data, sMRI data, and EEG data
drawn from 14 patients with schizophrenia and 22 healthy
controls;

- Demonstrated, through simulations, the importance of
algorithm choice and the stability to model mismatch
of tIVA compared to the popular fusion method, joint
independent component analysis;



- Compared the results of univariate analyses with mul-
tivariate analyses to explore the interaction of different
datasets in the context of data fusion and determine their
contribution to the final result;

- Showed that the differences in the results when combining
the fMRI and EEG datasets compared with the combina-
tion of all three datasets is minimal; highlighting that the
sMRI contributes little to the final result and supporting
the conclusions found using PCA-CCA;

- Compared the performance of tIVA with that of spatial
IVA (sIVA) and individual ICAs applied to multitask
fMRI data derived from 121 patients with schizophrenia
and 150 healthy controls during the performance of three
tasks: auditory oddball (AOD), Sternberg item recogni-
tion paradigm (SIRP), and sensorimotor task (SM);

- Showed using global difference maps (GDMs) that
though sIVA has, in general, higher spatial variability than
tIVA, tIVA appears more sensitive to group differences,
as shown in Figure 1.
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Fig. 1: GDMs for the AOD, SIRP, and SM tasks using the methods
ICA, sIVA, and tIVA. The GDMs for the same method are in the
columns, while the GDMs for the same dataset across methods are
in the rows. These spatial maps correspond to z-maps thresholded at
z = 2.7, where red and orange represent an increase in activation for
controls versus patients and blue represent an increase in activation
in patients over controls. Note that the p-value associated with each
GDM, which assesses the significance of the decomposition, is shown
above the corresponding spatial map.

FutureWork and Expected Results
Quantifying the Value of Datasets and of Fusion
The extraction of information from multiple sets of data
is a problem inherent to many fields, thus spurring the

development of a variety of methods to achieve this goal.
Such techniques can fall into one of two main categories:
data fusion, where the datasets are analyzed jointly, or data
integration, where the datasets are analyzed separately and
the results are combined. However, the selection of the optimal
method is dependent on the relationships between the datasets,
information that is very hard to obtain a priori. In order to
determine the effect of different modeling assumption on the
final result, multitask fMRI data drawn from 121 patients with
schizophrenia and 151 healthy controls during the performance
of three tasks, two auditory and one visual, is analyzed. In this
work, we expect to show that

- The contribution of each task to the final result can be
quantified by comparing the results when it is included
in the analysis to the results where the dataset is not
included in the analysis;

- There is an improvement when datasets are combined
with data fusion compared to when datasets are combined
through integration;

- Each task contributes differently to the final result and the
gain by combining two auditory tasks should be smaller
than combining a visual task with an auditory task.
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