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ABSTRACT

Gauss-Markov-Potts models for images and its use in many
image restoration and super-resolution problems have shown
their effective use for Non Destructive Testing (NDT) appli-
cations. In this paper, we propose a 3D Gauss-Markov-Potts
model for 3D CT for NDT applications. Thanks to this model,
we are able to perform a joint reconstruction and segmentation
of the object to control, which is very useful in industrial appli-
cations. First, we describe our prior models for each unknown
of the problem. Then, we present results on simulated data and
compare them to those of Total Variation (TV) minimization
algorithm. Two quality indicators exploiting the segmentation
are also proposed.

Index Terms— Gauss-Markov-Potts, 3D Computed To-
mography, joint reconstruction and segmentation

1. INTRODUCTION

Computed tomography (CT) is a powerful imaging tool to
see the interior of a three dimensional object and has a wide
field of applications. In particular, in industry, the most used
reconstruction algorithm is the so-called FDK algorithm [1]
for cone-beam CT, which performs a filtered back-projection
(FBP) algorithm. This algorithm is part of analytical recon-
struction methods, based on the use of Radon transform [2].
There exist other analytical reconstruction methods [3] which
use Fourier slice theorem but need to apply a filter in order to
deal with a tricky interpolation in Fourier domain.

These analytical reconstruction methods suffer from arti-
facts due to approximations and give poor results with limited-
angle projections. From this standpoint, algebraic reconstruc-
tion techniques (ART) and iterative methods have been pro-
vided for the last decades and consider a linearized discretiza-
tion of Radon transform. In order to account for the errors and
to obtain a better reconstruction, most of these methods apply
a regularization which enforces some priors on the object to
reconstruct [4].

In our application, we aim at reconstructing an industrial
part which is composed of several materials filling one or sev-
eral compact and quite homogeneous regions. Gauss-Markov-
Potts model has been successfully applied in microwave imag-
ing [5] and image restoration [6]. In this paper, we present
a 3D Gauss-Markov-Potts model for CT for non-destructive
testing (NDT) in industry, based on the works done in [6].
A joint maximization a posteriori (JMAP) is also proposed,
which jointly retrieves an estimation of the object to recon-
struct and a segmentation of the reconstructed object in com-
pact and well-distinguishable regions. Herein, results are
shown on simulated data.

2. MODELS

The forward model is based on the discretization of Radon
transform. Denoting by g the data, by f the object to recon-
struct and by H the projection operator, we write the forward
projection model :

g =Hf + ε (1)

Errors εi are modeled as zero-mean Gaussian with unknown
variances (vεi)i ,∀i, which are modeled as following an In-
verse Gamma distribution :

p(vεi |αε0 , βε0) = IG(vεi |αε0 , βε0),∀i (2)

where αε0 et βε0 are fixed hyperparameters.
For the object, as said in introduction, we use a Gauss-

Markov-Potts model. We define a hidden field z that labels
each voxel by the material it represents : for instance, zj = k
if voxel j is part of material k. We assume that the number
K of materials in the object is known. Then, homogeneity
of each material is enforced by modeling that the gray values
of the voxels of a same material k are distributed around an
unknown mean value mk, with unknown variance vk

p(fj |zj = k,mk, vk) = N (fj |mk, vk) if zj = k. (3)

The priors for the means and the variances of the classes are

p(mk|m0, v0) = N (mk|m0, v0) (4)

and

p(vk|α0, β0) = IG(vk|α0, β0) (5)

where m0, v0, α0 and β0 are fixed hyperparameters. To trans-
late the compacity of each material, we assign a Markov-Potts
prior model for the hidden field z:

p(z|α, γ0) ∝ exp

∑
j

(
K∑
k=1

αkδ(zj − k)+

γ0
∑
i∈V(j)

δ(zj − zi)

 (6)

Parameter γ0 allows to control the compactness of the regions,
as shown in figure 1. Herein, γ0 is tuned sufficiently large so
the regions are compact. These prior models are very similar
to the ones proposed in [6] for image restoration. The main
difficulty here is that we deal with very huge 3D objects : this
makes matrixH unstorable in memory.
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Fig. 1: Potts field z for different values of γ0, with K = 5 classes
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Fig. 2: Gauss-Markov-Potts hierarchical model

3. JOINT MAXIMIZATION AND RESULTS

Our hierachical model is summarized in figure 2. We estimate
the unknowns f , z,vε,m and v by maximizing the joint pos-
terior distribution of the unknowns (JMAP) :

p(f , z,vε,m,v|g;M) ∝ p(g|f ,vε) p(f |z,m,v)
p(vε|αε0 , βε0) p(z|α; γ0)
p(m|m0, v0) p(v|α0, β0)

(7)

Equation (7) highlights the importance of our priors. Thanks
to this expression, at iteration t of the algorithm, in order to
estimate and update each unknown, we can successively max-
imize its posterior distribution given the other unknowns : this
is an approximate maximization of the posterior distribution
which makes possible to achieve joint reconstruction and seg-
mentation of the controlled object.

The method is tested on 2563 size Shepp-Logan 3D phan-
tom, of which the middle slice is shown in figure (3a). The
corresponding segmentation is shown in figure (3b): the num-
ber of materials is K = 5. 64 projections with 2562 pixels are
obtained from this phantom and are noisy with signal-to-noise
ratio (SNR) equal to 20 db. Then, the algorithm is applied
with γ0 = 3 and the reconstruction and the segmentation, of
which middle slices are shown in figures (3c) and (3d), are
obtained. The core of the algorithm speedup is the paralleliza-
tion on GPU of the projectorH and backprojectorHT , which
makes gradient descent in the object estimation step fast. For
the reconstruction and segmentation in figures (3c) and (3d),
we have achieved a total computation time about 10 minutes.
The method is compared to Total Variation (TV) minimiza-
tion algorithm, to which a posterior Potts segmentation is ap-
plied. The results for TV are shown in figures (3e) and (3f).
TV reconstruction retrieves the bone better than our algorithm,
but joint segmentation in figure (3d) retrieves the detail on the
forehead while this is not the case in figure (3f), although it
is retrieved in TV reconstruction. This emphasizes the great
interest of joint reconstruction and segmentation, that is not
cumulating errors from reconstruction and segmentation algo-
rithms.

Moreover, we have used the segmentation to define two
quality indicators designed so that the higher they are, the bet-
ter the reconstruction is. The compactness indicator gives the
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Fig. 3: Shepp-Logan 3D phantom (a) and its segmentation (b), obtained joint
reconstruction (c) and segmentation (d) by our method, and obtained recon-
struction by TV (e) and its posterior Potts segmentation (f) (middle slices)

average rate of voxels which are only surrounded by neigh-
bours in the same class as them : it is 89.2% for our method
reconstruction and 88.9% for TV. The distinguishability indi-
cator measures how two voxels on the contours of the regions
and in different classes are distinguishable : for our method, it
is 73.9%, while it is 72.8% for TV.

4. CONCLUSION AND PERSPECTIVES

In this paper, we have presented a comprehensive prior model
to perform joint reconstruction and segmentation in 3D CT.
This method has been shown to retrieve results comparable
to TV. Herein, the two proposed quality indicators have made
us able to see that joint segmentation is better than posterior
segmentation. Future works will focus on full implementation
on GPU and some variations in the prior model.
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