
1

Clustered Pattern Sparse Signal Recovery Using
Hierarchical Bayesian Learning

Mohammad Shekaramiz, Student Member, IEEE,
Advisor: Todd K. Moon, Senior Member, IEEE,

Co-Advisor: Jacob H. Gunther, Senior Member, IEEE
ECE Department and Information Dynamics Laboratory, Utah State University

Abstract— Recently, we proposed a novel hierarchical Bayesian learning algorithm

for the recovery of sparse signals with unknown clustered pattern for the general

framework of multiple measurement vectors (MMVs). In order to recover the

unknown clustered pattern we incorporated a parameter to learn the number of

transitions over the support set of the solution. This parameter does not exist in

other algorithms, and it is learned via our hierarchical Bayesian algorithm.

I. INTRODUCTION

The problem that we address in this paper is for the recovery
of sparse signals via either Single- and multiple measurement
vector (SMV or MMVs) when the sparse solution exhibits
an unknown clustered pattern. In this case, we provide a
new hierarchical sparse Bayesian learning model. SMV and
MMV are computational inverse problems in the compressive
sensing area. Compressive sensing (CS) enables us to represent
a sparse or compressible signal via a small set of linear
measurements [1]. The SMV seeks the sparsest solution xs
in y = Axs + e, where A is wide and known and e is the
measurement noise. MMV deals with the same problem as
the SMV but for the case where Y and X are matrices i.e.,
Y= AXs + E. In MMV, it is usually assumed that the non-
zero elements in the columns of Xs occur at the same rows.
This has been referred to as joint sparsity in the literature.

In some applications such as neuromagnetic imaging [2]
and direction of arrival (DOA) estimation [3], non-zero com-
ponents of the sparse signal appear in clusters. Therefore, in
addition to joint sparsity, a clustered pattern also appears in
the columns of Xs. There exist many greedy-based algorithms
for the recovery of clustered pattern sparse signals via the
SMV [4], [5]. However, it turns out that such algorithms
need some prior knowledge on the cluster pattern. Other
than the greedy algorithms, there also exist some sparse
Bayesian learning (SBL) algorithms devised for the SMV and
MMVs, categorized as follows. The first approach uses a zero-
mean Gaussian prior with some precision accompanied with
a Gamma hyper prior on the precision [6]. Promoting the
clustered pattern solution is then accomplished by defining
different set of hyper parameters on the Gamma hyper prior
depending on the active or inactive status of neighbor supports
[7]. The second SBL approach uses a Bernoulli-Gaussian or
equivalently spike-and-slab prior [8]. Our proposed model falls
within the second sparse Bayesian modeling category i.e.,
using Bernoulli-Gaussian prior. The proposed model can be
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applied to either SMV or MMVs. Our main contribution in
this area is incorporating an additional parameter to measure
the contiguity in the supports of the solution. One can think
of such parameter as a knob that determines the overall
clumpiness of the supports of the solution. This parameter
is learned via our hierarchical SBL algorithm. Previously
developed algorithms do not have this control parameter for
learning the pattern via the measure of overall clumpiness over
the solution.

II. CLUSTERED-SPARSE BAYESIAN LEARNING

The basic model for the MMV problem is defined as follows

Y = A(s ◦X) + E, (1)

where Y ∈RM×N , A∈RM×P , s∈{0, 1}P×1, X∈RP×N , and
“◦” denotes the Hadamard product. In (1), Y is the observed
noisy data, A is a known sensing matrix, s is an unknown
binary support-learning vector, X is an unknown solution-
values matrix, and E denotes the measurement noise. Notice
that we assumed the same precision on the components of X
for the simplification purposes. The columns of X in (1) are
assumed to be drawn i.i.d. as follows

xn∼N (0, τ−1IP ), τ∼Gamma(a0, b0), n= 1, . . . , N. (2)

The hyper-parameters are set to a0 = b0 = 10−3, where a0

and b0 denote the shape and rate of the Gamma distribution,
respectively. We model the noise components in E as follows

emn ∼ N (0, ε−1), ∀m,n, ε ∼ Gamma(θ0, θ1). (3)

The hyper-parameters in (3) are set to θ0 = θ1 = 10−3.
We assume that the columns of the solution matrix are

jointly sparse and each xn might have groups of adjacent non-
zeros. In this case, we measure the amount of clumpiness in
the support-learning vector s as follows [9]

Σ∆(s) =

P∑
p=2

|sp − sp−1|. (4)

There exist fewer transitions in s for the case where the
supports of the solution have a clustered pattern compared
to random distribution of supports, corresponding to a smaller
(Σ∆) measure computed according to (4). We model the prior
on the elements of s as follows

(sp;ω0,p, ω1,p) ∼ Bernoulli(
ω1,p

ω0,p + ω1,p
),∀p = 1, 2, ..., P,

ωk,p = e−α(Σ∆)k,pBinomial(Σk,p, P, γp),∀k = 0, 1,
(5)
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Fig. 1. Graphical model of the proposed model.

where α specifies the significance of the amount of clumpiness
in the support vector s. As was mentioned earlier, α is also to
be learned in a Bayesian fashion. For this purpose, we employ
the prior α ∼ Gamma(a1, b1) on α, where a1 = 2 × 10−3

and b1 = 10−3. The proposed graphical model is shown in
Fig. 1. In Fig. 1, the large shaded node shows the observations
and small solid nodes represent the hyper-parameters. Each
unshaded node denotes a random variable(s) [10].

Below, we provide a pseudocode description of our
algorithm (C-SBL) for the clustered pattern SMV/MMVs
using the obtained posterior inferences on the variables.

C-SBL Algorithm:

{Θ(i)}i=1 to Ncollect = C-SBL(Y,A,Θ0, Nburn−in, Ncollect)

For Iter = 1 to Nburn−in +Ncollect
For p = 1 to P
ỹ−pmn = ymn −

∑P
l6=p amlslxln, ∀m = 1 to M, ∀n = 1 to N

cp =
1−γp
γp

Σ1,p
P+1−Σ1,p

kp = e
ε
2

(
(‖ap‖22

∑N
n=1 x

2
pn)−2aTp (

∑N
n=1 xpnỹ

−p
n )
)

(sp|−) ∼ Bernoulli( 1

1+cpkpe
−α
(
(Σ∆)0,p−(Σ∆)1,p

) )

For l = 1 to P
Σx = (τ + εs2l ‖al‖

2
2)−1, µ̄ = εslΣxal

ỹ−ln = yn − A(s ◦ xn) + slxl,nal, ∀n = 1, . . . , N

(xl,n|−) ∼ N (µ̄T ỹ−ln ,Σx), ∀n = 1, . . . , N
End For {l}
(γp|−) ∼ Beta

(
α0 + 1 + 2

∑P
k 6=p sk , β0 − 1 + 2(P −

∑P
k 6=p sk)

)
End For {p}
(τ |−) ∼ Gamma(a0 + NP

2 , b0 + 1
2 ‖X‖

2
F )

(ε|−) ∼ Gamma(θ0+MN
2 , θ1+ 1

2 ‖Y −A(s◦X)‖2F )

α obtains from soving for α[t+1] in∑P
p=1

(Σ̄∆)
[t]
p

1+ 1

c
[t]
p

e
α[t+1](Σ̄∆)

[t]
p

−
∑P
p=1(1−s[t]p )(Σ̄∆)[t]

p +
a1−1

α[t+1]
−b1 = 0

Θ(Iter−Nburn−in) ← Θ, ∀Iter > Nburn−in

End For {Iter}

In the above inferences, the terms (Σ∆)k,p and Σk,p denote
the (Σ∆) value and the sum over all the elements of s for
the case where sp = k, respectively. In our implementation
we approximate the posterior densities via Markov chain
Monte Carlo (MCMC) method and using Gibbs sampling. We
run C-SBL for Nburn−in iterations, where Nburn−in is set
experimentally until reaching stable Markov chain. Then, we
perform Ncollect more iterations and start collecting samples.

III. SIMULATION RESULTS

We show the performace of our proposed algorithm com-
pared to MFOCUSS [2], MSBL [11], and T-MSBL [12], [13]
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Fig. 2. Comparison of the error between the true and the estimated solution.

algorithms for the MMV problem. The number of columns in
the solution X is set to N = 2. In Fig. 2, we illustrate the
obtained experimental results in terms of normalized mean-
square error (NMSE) for the slution when the ratio M/P
varies. In Fig. 2, the term ρ denotes the correlation factor that
has been considered between the columns of the true solution.

IV. CONCLUSION AND FUTURE WORK
We proposed a new sparse Bayesian learning algorithm

for the recovery of sparse signals with unknown clustered
pattern via MMVs. Based on the simulations, we showed that
our algorithm provides encouraging performance. As a future
work, we will modify our model to account for the possible
existance of correlation between the columns of the solution.
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