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ABSTRACT
After the 2008 financial crisis, risk management has become more
important than performance management and an alternative portfo-
lio design, referred to as risk parity portfolio, has been receiving
significant attention from both theoretical and practical fields due to
its advantage in diversification of (ex-ante) risk contributions among
assets. Usually, this approach results in a portfolio with nonzero
weights in all the assets. Investors, however, could not lay out the
capital among all the assets listed on the markets, which results in
unrealistically high transaction costs, and therefore, reduction of the
return of the designed portfolio. To overcome this drawback, in this
paper, we propose a method to jointly select only some of the assets
and distribute the capital among the selected assets such that the risk
is diversified enough.

Index Terms— Asset Selection, Portfolio Optimization, Risk Par-
ity, Successive Convex Approximation.

1. INTRODUCTION

For over fifty years, the mean-variance portfolio optimization frame-
work [1–3], i.e., minimizing the mean-variance trade-off of a port-
folio, has been well-researched in the academic field. However, this
framework tends to output a portfolio with risk excessively concen-
trated over a few assets, which goes against the common sense of
diversification as a way to reduce the risk. The portfolio that diversi-
fies the capital via minimizing the the mean-variance trade-off does
not necessarily diversify risk [4]. Serious issues, which might not
occur during normal times, would happen if a financial crisis were
to happen, because such a concentrated portfolio would probably in-
cur huge losses.

Around 2005, Qian [5, 6] first showed that equal risk contribu-
tions (ERC) actually lead to a diverse enough portfolio, and the (ex-
ante) risk contributions (RCs) (i.e., the risks computed using histor-
ical data) are not only a mathematical measurement, but also good
indicators of the (ex-post) loss contributions of the assets (i.e., the
observed risks and losses in the future), especially when there exist
large losses. According to this observation, the way to avoid a po-
tential huge loss is to distribute the RCs. However, the risk parity
portfolio did not attract too much attention before the 2008 financial
crisis until Maillard et al. [7] first analyzed the properties of the ERC
portfolio and showed that it is a trade-off between the minimum vari-
ance (MV) and equal weight (EW) portfolios. Following that, there
are more works on different formulations [8–12] or numerical meth-
ods for computing the risk parity portfolio [13–16]. Meanwhile, the
risk parity portfolio has found its application in various applications,
e.g., risk-based indexation, alternative assets management, portfo-
lio with multi-asset classes, etc., and the recent book [4] serves as a
good summary on both the theoretical foundations and various ap-
plications of the risk parity portfolio.

Another practical issue in portfolio design is the transaction cost.
The transaction cost in general is assumed to be concave [17], e.g.,
Lobo et al. [18] considered a constant plus linear cost function. Thus,
to reduce the transaction cost, it is beneficial to invest only part of
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all the assets and then invest a significant amount of money in each
selected asset. The first idea was to regularize (or to constrain) the
`1-norm of the portfolio weights since it is well-known that the `1-
norm is convex and can promote sparsity at the same time [19, 20].
And later people also considered some nonconvex (e.g., `0-norm,
`q-norm with 0 < q < 1, logarithmic penalty, etc.) regularizations
(or constraints), see [21, 22].

Unfortunately, the risk parity conditions always result in a port-
folio with nonzero weights in all the assets [4, 7], which implies
considerable transaction costs and may attenuate the portfolio per-
formance significantly.

To the best of our knowledge, the combination of selecting assets
and risk diversification has not been investigated in portfolio design.
This motivates us to consider them jointly for the portfolio designs
and the main contributions are i) we first propose a problem formula-
tion allowing us to jointly select the assets and diversify the risk for
portfolio optimization, which is a highly nonconvex problem, and
ii) we further develop an efficient iterative solving algorithm dealing
with the proposed problem.

2. RISK PARITY PORTFOLIO BACKGROUND

2.1. Risk contribution

Suppose there are n assets with random returns r ∈ Rn, and the
mean vector and (positive definite) covariance matrix are denoted as
µ ∈ Rn and Σ ∈ Rn×n. We use w ∈ Rn to denote the normalized
portfolio (e.g., wT1 = 1), which describes how the total capital
budget is to be allocated over the assets. To study the risk parity
portfolio, we need to properly define a quantity which can represent
the “RC” of each asset to the whole portfolio.

In this paper, we focus on the portfolio volatility1, i.e., σ (w) ,√
wTΣw, as the risk measurement. Since the portfolio volatility

can always be decomposed as follows:
n∑
i=1

wi
∂σ (w)

∂wi
=

n∑
i=1

wi
(Σw)i√
wTΣw

= σ (w) , (1)

then each term wi
∂σ
∂wi

can be regarded as the RC of the i-th asset
since the summation of all the terms is the total risk.

2.2. Risk parity portfolio

A risk parity portfolio is a portfolio such that each asset has the same
RC. That, given the portfolio volatility σ (w), the risk parity portfo-
lio should satisfy

wi
(Σw)i√
wTΣw

= wj
(Σw)j√
wTΣw

, ∀i, j. (2)

Based on (1), the relationship (2) can be rewritten as

wi
∂σ (w)

∂wi
=

1

n

√
wTΣw, ∀i. (3)

1The RCs are also well defined for other risk measures, e.g., Value-at-
Risk (VaR) and Conditional VaR, but not variance. For further information,
see [4] and references therein.
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Furthermore, multiplied by σ (w), the relationships (2) and (3) can
be simplified, respectively, as follows

wi (Σw)i = wj (Σw)j , (4)

wi (Σw)i =
1

n
wTΣw. (5)

Given the above relationships (2)-(5), we can have various func-
tions, denoted as gi (w) (e.g., gi (w) , wi (Σw)i, or wi(Σw)i√

wTΣw
, or

wi(Σw)i
wTΣw

), to represent the RCs. More such functions can be found
in [16, Table I].

3. PROBLEM FORMULATION

In this section, we will propose a portfolio optimization formulation
considering asset selection and risk parity jointly and highlight the
challenges of solving it.

3.1. Portfolio optimization with asset selection and risk parity
control

Now we propose the following portfolio optimization problem for-
mulation with asset selection and risk parity control:

minimize
w, θ

U (w) , F (w) + λ1 ‖w‖0 + λ2R (w, θ)

subject to wT1 = 1, w ∈ W,
(6)

where

• F (w) , −νwTµ + wTΣw is the mean variance trade-off
objective with ν ≥ 0 the trade-off parameter.

• ‖w‖0 ,
∑n
i=1 1{wi 6=0} is the `0-norm that regularizes the

cardinality of the portfolio weights.

• R (w, θ) measures the risk concentration and has the form

R (w, θ) ,
n∑
i=1

(gi (w)− θ)2 1{wi 6=0} (7)

in which gi (w) is any smooth nonconvex differentiable func-
tion that measures the RC of the i-th asset of the portfolio and
θ is a (scalar) variable denoting average RCs of the selected
assets (i.e., for wi 6= 0). The smaller the quantity R (w, θ)
is, the more uniform the risk is distributed among the the se-
lected assets.

• λ1, λ2 ≥ 0 are the regularization trade-off parameters.

• wT1 = 1 denotes the capital budget constraint.

• W is a convex set that denotes the market regulations and in-
vestor’s profiles, e.g., turnover constraints, holding constrains,
tracking error constraints, etc.

Observing the objective of (6), we can see that the first regularization
‖w‖0 regularizes the number of stocks and promotes sparsity, and
the second regularizationR (w, θ) tends to distribute the risk among
the selected assets. If λ1 > 0, denote α , λ2/λ1 ≥ 0 and the
objective of (6) can be rewritten as

U (w) = F (w) + λ1

n∑
i=1

1{wi 6=0} + λ2

n∑
i=1

(gi (w)− θ)2 1{wi 6=0}

= F (w) + λ1

n∑
i=1

(
1 + α (gi (w)− θ)2

)
1{wi 6=0}. (8)
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Fig. 1. The indicator function, the smooth approximation ρεp (x)
with p = 0.2 and ε = 0.05, and the first-order linear and second-
order quadratic approximation functions u1(x;x

0) and u2(x;x
0) at

the approximation point x0 = 1.

The second term in (8) is a weighted `0-norm of w with the weights
1+α (gi (w)− θ)2 representing the deviation of the RC of the i-th
asset from the average level θ. Thus, the larger the risk deviation is,
the heavier weight is put to the cardinality penalty. This makes sense
since we want to jointly select the assets and achieve risk diversifi-
cation among them.

3.2. Challenges

Since each function gi (w) is highly nonconvex and the indicator
function 1{wi 6=0} is highly nonconvex, nondifferentiable, and dis-
continuous, clearlyR (w, θ) is nonconvex and nondifferentiable, and
the problem (6) is hard to deal with.

4. SOLVING APPROACH

In the following, we deal with the problem of interest (6). Note that
there are two main difficulties in the objective function: the noncon-
vexity and discontinuity (caused by the nondifferentiable indicator
function). To deal with these main difficulties, in this section, we
first approximate problem (6) with a (nonconvex but) differentiable
problem and then derive a successive convex approximation (SCA)
based solving approach for the approximation problem. The pro-
posed iterative algorithm is guaranteed to converge to a stationary
point of the approximation problem.

4.1. Smooth approximation problem

Following [23], we approximate the indicator function by the fol-
lowing smooth approximation:

ρεp (x) =

{
x2

2ε(p+ε) log(1+1/p)
, |x| ≤ ε

log(1+|x|/p)−log(1+ε/p)+ ε
2(p+ε)

log(1+1/p)
, |x| > ε

(9)

where p > 0 and ε > 0 are controlling parameters, and when they
both goes to zero, ρεp (x) converges to the indicator function. Fig. 1
shows the approximation when p = 0.2 and ε = 0.05. The smaller ε
is, the better the indicator function is approximated around the point
x = 0. Indeed, when ε converges to zero, ρεp (x) converges to the
(nondifferentiable) function log(1+|x|/p)

log(1+1/p)
which coincides with the

approximation in [24, 25]. In practice, we can set ε to be very small,
e.g., ε = 10−8, to achieve satisfactory approximation and avoid the
numerical nondifferentiability at x = 0.

Then moving the indicator function inside the square ofR (w, θ)
(so that later we can construct a convex quadratic approximation
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more easily) and replacing each indicator function 1{wi 6=0} in prob-
lem (6) with the approximation ρεp (wi) yield the following approx-
imation problem:

minimize
w,θ

Ũ (w) , F (w) + λ1

∑n
i=1 ρ

ε
p (wi)

+λ2

n∑
i=1

(
(gi (w)− θ) ρεp (wi)

)2
︸ ︷︷ ︸

R̃(w,θ),

subject to wT1 = 1, w ∈ W,

(10)

where Ũ (w) is a continuous and differentiable approximation of
U (w), however, it is still nonconvex. In the following, we mainly
focus on solving the approximation problem (10) instead and de-
velop fast iterative numerical algorithms based via SCA.

For technical reasons, we make the following assumptions:

(A1) W1 ,
{
wT1 = 1

}
∩W is nonempty, closed, and convex;

(A2) R̃ and each gi are C1 on an open set containingW1;

(A3) ∇R̃ is Lipschitz continuous onW1 with constant LR;
(A4) F (w) is continuous and convex onW1;

(A5) U (w) is coercive with respect toW1.
Note that the above assumptions are standard and are satisfied by a
large class of functions. For instance, A3 is satisfied automatically if
W1 is bounded, and A4 is satisfied by all the standardF used in port-
folio design. Assumption A5 guarantees that the sequence generated
by the solving approach later is bounded, and ifW1 is bounded A5
is trivially satisfied. For the portfolio design in the real markets,
the feasible set will always be bounded due to some practical con-
straints, e.g., turnover constraints, holding constrains, tracking error
constraints, etc, [26], and the above assumptions are easily satisfied.

4.2. Solving approach via SCA

The idea of SCA is to approximate the original (possibly nonconvex)
function at each iteration point by a solvable convex problem to get
an update. Suppose now we are at the k-th iteration point

(
wk, θk

)
,

the updatings of θ and w based on SCA are designed as follows.

4.2.1. Updating θ

When w is fixed to wk, minimizing problem (10) with respect to θ
equals to the following unconstrained scalar minimization problem

minimize
θ

∑n
i=1

((
gi
(
wk
)
− θ
)
ρεp
(
wki
))2

. (11)

This is a univariate weighted least-square problem, which is strongly
convex, and setting the derivative of the objective to zero directly
yields the optimal solution in closed-from, which is given by the
steps 2-3 in Alg. 1.

4.2.2. Updating w

To update w, we need to first construct a local convex approximation
of the objective of the problem (10) w.r.t. w at the point wk. Let us
consider it term by term. Since F (w) is already convex, we keep it
as it is and only consider the nonconvex terms.
Approximating

∑n
i=1 ρ

ε
p (wi). We apply two different ideas here.

Method 1: First-order linear approximation. The first idea is to fol-
low the first-order iterative weighted `1-norm approximation method
[24, 25] to construct a piecewise linear approximation:

ρεp (wi) ≈ u1(wi;w
k
i ) = d1(w

k
i ) |wi|+ ck1i (12)

where d1(x) =

{
|x|

ε(p+ε) log(1+1/p)
, |x| ≤ ε

1
(|x|+p) log(1+1/p)

, |x| > ε
and ck1i is a properly

chosen value so that the equality holds at wki . Thus,
∑n
i=1 ρ

ε
p (wi)

can be approximated by a weighted l1-norm function:

n∑
i=1

ρεp (wi) ≈
∥∥∥Dk

1w
∥∥∥
1
+

n∑
i=1

ck1i (13)

where Dk
1 , Diag

([
d1
(
wk1
)
, d1
(
wk2
)
, . . . , d1

(
wkn
)])

and
∑n
i=1 c

k
1i

is a constant given wk and can be disregarded at each iteration.
Method 2: Second-order quadratic approximation. Following [23],
the second idea is to approximate ρεp (wi) by a quadratic convex
function at the k-th point wki as follows:

ρεp (wi) ≈ u(wi;wki ) = d2(w
k
i ) (wi)

2 + ck2i (14)

where d2(x) =

{
1

2ε(p+ε) log(1+1/p)
, |x| ≤ ε

1
2|x|(|x|+p) log(1+1/p)

, |x| > ε
is a weight func-

tion and ck2i is a properly chosen value so that the equality holds at
wki . Then we have that

∑n
i=1 ρ

ε
p (wi) is approximated by a convex

quadratic function

n∑
i=1

ρεp (wi) ≈
∥∥∥Dk

2w
∥∥∥2
2
+

n∑
i=1

ck2i (15)

where Dk
2 , Diag

([√
d2
(
wk1
)
,
√
d2
(
wk2
)
, . . . ,

√
d2 (wkn)

])
and

they share the same derivative w.r.t. w at point wk and
∑n
i=1 c

k
2i is

a constant given wk and can be disregarded at each iteration.
Fig. 1 shows an example how the first-order and second-order

approximations u1(x;x
0) and u2(x;x

0) approximate the noncon-
vex function ρεp (x) at the point x0 = 1. Generally speaking, the
first-order approximation is that it approximates the indicator better,
however, the second-order approximation may result in simpler up-
date expressions for some special case constraints (e.g., it results in
closed-form update step for linear equality constraints).
Approximating R̃ (w, θ). Defining g̃i (w, θ) , (gi (w)− θ) ρεp (wi),
we have R̃ (w, θ) =

∑n
i=1 (g̃i (w, θ))

2 . Following the idea of [16],
we can linearize the functions g̃i inside the square and get the fol-
lowing approximation:

P (w, θ) ,
n∑
i=1

(
g̃i
(
wk, θ

)
+
(
∇g̃i

(
wk, θ

))T (
w −wk

))2

where

∇g̃i (w, θ) , ρεp (wi) · ∇gi (w) +
(
(gi (w)− θ) · ∇ρεp (wi)

)
· ei

is the derivative of g̃i (w, θ) w.r.t. w. Here the vector ei ∈ Rn
denotes the column vector with only the i-th element being one and
zero elsewhere. It is easy check that R̃ (w, θ) and P (w, θ) have the
same derivative w.r.t. w at point wk, that is, ∇R̃ (w, θ) |w=wk =

∇P (w, θ) |w=wk , where∇R̃ (w, θ) and∇P (w, θ) denote the par-
tial gradient of R̃ (w, θ) and P (w, θ) w.r.t. to w, respectively.
Updating problem. When θ is fixed to θk, replacing

∑n
i=1 ρ

ε
p (wi)

and R̃
(
w, θk

)
with the right hand side of (13) or (15) andP

(
w, θk

)
,

respectively, and removing the constant terms, the problem (10) can
be approximated at wk by the following convex problem:

minimize
w

F (w) + λ1

∥∥Dk
ow
∥∥o
o
+ λ2P

(
w, θk

)
+ τ

∥∥w −wk
∥∥2
2

subject to wT1 = 1, w ∈ W,
(16)
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where the proximal term
∥∥w −wk

∥∥2
2

with τ > 0 is added for con-
vergence reasons, and o = 1 or o = 2 denotes the first-order or
second-order approximation in (13) or (15), respectively.

Supposing F (w) is convex, for nonempty convex set W1 (re-
call thatW1 =

{
wT1 = 1

}
∩W) and τ > 0, for either o = 1 or

o = 2, the problem (16) is strongly convex and can be solved by the
existing efficient solvers (e.g., MOSEK [27], CPLEX [28], etc).

4.2.3. Iterative algorithm and convergence

Alg. 1 summarizes the previous derived iterative solving procedure.

Algorithm 1 SCA for portfolisomeo optimization under asset selec-
tion and risk parity control.

Input: k = 0, w0 ∈ W , θ0 =
∑n
i=1 x

0
i gi
(
w0
)
, τ > 0,

{
γk
}
> 0

Output: a stationary point of problem (10)
1: repeat

2: xki =
(ρεp(w

k
i ))

2∑n
j=1(ρεp(wkj ))

2

3: θ̂ =
∑n
i=1 x

k
i gi
(
wk
)

4: θk+1 = θk + γk
(
θ̂k − θk

)
5: Solve (16) to get the optimal solution ŵk

6: wk+1 = wk + γk
(
ŵk −wk

)
7: k ← k + 1
8: until convergence

Proposition 1. Under assumptions A1-A5, suppose τ > 0, γk ∈
(0, 1], γk → 0,

∑
k γ

k = +∞ and
∑
k

(
γk
)2

< +∞, and let{
wk
}

be the sequence generated by Alg. 1. Then either Alg. 1
converges in a finite number of iterations to a stationary point of (10)
or every limit of

{
wk
}

(at least one such point exists) is a stationary
point of (10).

Proof. Under assumptions A1-A5 and given τ > 0 and γk as above,
since θ can be found in closed form for any given w and it is easy
to check that for any fixed θ the approximated problem (16) is a par-
tial linear approximation of (10) with a quadratic uniformly strongly
convex proximal term. That is, [29, Assumptions A1-A4] and [29,
condition (b) in Theorem 3] are satisfied, and the proof of Prop. 1
follows directly from [29, Theorem 3].

In Alg. 1, steps 4 and 6 are used to speed up the convergence
numerically and one practical rule of choosing γk is: given γ0 ∈
(0, 1], let letγk = γk−1

(
1− ζγk−1

)
, k = 1, 2, . . . where ζ ∈

(0, 1) is a given constant [29, 30]. This rule in general enjoys really
fast numerical convergence speed, e.g., see [16, 29–31].

5. NUMERICAL RESULTS

In this section, we conduct a simple synthetic example to show that
indeed the proposed methods can efficiently select the assets and di-
versify the RCs jointly. For simplicity, let us consider n = 10 uncor-
related assets with increasing volatilities σ1 = 1%, σ2 = 2%, . . . ,
σn = 10%, and the covariance matrix is Σ = Diag([σ2

1 , σ
2
2 , . . . , σ

2
n]).

We consider risk performance portfolios: i) the EW portfolio, i.e.,
wi = 1/n, ii) the ERC portfolio, i.e., wi (Σw)i = wj (Σw)j ,
which reduces to wi ∝ 1/σi, iii) the MV portfolio, w ∝ Σ−11
which turns to be wi ∝ 1/σ2

i , and iv) two proposed portfolio given
by Alg. 1: one is using the first-order linear approximation, i.e.,
o = 1, where ν = 0, gi(w) = wi (Σw)i, p = 0.002, ε = 10−8,
λ1 = 0.1, and λ2 = 4, the other is using the second-order quadratic
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Fig. 2. Comparisons of different methods: (a) portfolio weights; (b)
normalized of RCs, and (c) different portfolio criteria, i.e., portfolio
volatility, number of selected stocks, and Gini index of the RCs.

approximation, i.e., o = 2, with all the parameters unchanged except
that λ1 = 2−4. The covariance matrix is scaled up by 104 to avoid
any numerical issues.

Intuitively, if all the volatilities are close to each other, all the
three existing methods, i.e., the EW, ERC, and MV portfolios, tend
to provide similar weights. Here, we expect they provide very differ-
ent weights in this numerical example because the asset volatilities
vary significantly from 1% to 10%. Fig. 2(a) shows the portfolio
weights of all the methods and we can see that the MV portfolio
concentrates most of its capital on the first asset with lowest volatil-
ity, the ERC portfolio concentrates less, and the EW portfolio is uni-
form. The weight concentration of the both proposed methods are
between the MV and ERC portfolios, however, with only four out of
ten assets selected (see the right panel of Fig. 2(c)).

Next, let us investigate the risk diversification. Fig. 2(b) shows
the normalized asset RCs such that summation of the normalized
RCs given by each method is one. We see the MV portfolio concen-
trates most of the risk on the first asset with lowest volatility. This
makes sense since it intends to achieve as the minimum variance.
The EW portfolio concentrates more on volatile assets, and the ERC
portfolio distribute the RCs uniformly. Compared with MV and EW
portfolios, the proposed methods are less risk concentrated while us-
ing fewer assets (see the right panel of Fig. 2(c)).

Fig. 2(c) summarizes three important criteria, i.e., portfolio
volatility, number of selected stocks, and Gini index of the RCs
(for this criterion see [4]), normalized by their maximum values,
respectively. For all these three criteria, the smaller the better. In-
terestingly, the proposed methods with different (i.e., first-order or
second-order) approximations perform virtually the same in every
aspect and almost have the same volatility as the MV portfolio but
selects fewer assets and diversifies the risk enough. If we incorporate
some low correlations among the assets, we can have similar results
as Fig. 2(c). Thus, we can conclude that the proposed methods can
efficiently select the assets and diversify the risk.

6. CONCLUSION

In this paper, we have proposed a portfolio optimization formulation
with asset selection and risk parity control and a simple and efficient
sequential solving approach based on SCA. The numerical results
show that the proposed formulation jointly achieves asset selection
and risk diversification.
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