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ABSTRACT

In indoor and dense urban environments, Global Navigation Satellite
System (GNSS) receivers have to cope with extremely low received
power levels. In these circumstances, GNSS receivers become vul-
nerable to adverse propagation effects such as near-far interference,
where acquisition is affected by large cross-correlation peaks be-
cause signals from different satellites experience very different at-
tenuation patterns. This translates into a degraded pseudoranges
performance, and enters into conflict with the demand for improved
positioning accuracy and integrity motivated by the widespread use
of GNSS receivers in these scenarios. This paper presents novel
low-complexity techniques for near-far detection in high-sensitivity
GNSS receivers. These techniques exploit the statistical differences
of the acquisition measurements in the presence and in the absence
of near-far, and they outperform previously proposed detectors in
terms of detection probability. A method to determine the detection
threshold for a given probability of false alarm is also presented.
Simulations for Galileo E1C signals are used to illustrate the en-
hanced performance of the proposed algorithms.

Index Terms— Cross-correlation, detection threshold, GNSS,
interference detection, near-far.

1. INTRODUCTION

Global Navigation Satellite Systems (GNSS) have experienced an
important expansion in the last decade, mainly boosted by the US
FCC E911 mandate and the European E112 recommendation on the
emergency-call location [1]. Nowadays, GNSS technology is widely
used for navigation and precise positioning in safety-critical appli-
cations that often require stringent performance, such as maritime,
aviation and rail transportations [2].

The availability and positioning accuracy provided by GNSS
systems in clear-sky conditions (rural, low-density urban environ-
ments) makes them one of the most suitable technologies for the im-
plementation of location based services (LBS) in the massive mar-
ket of mobile devices. Nonetheless, when operating in indoor or
dense urban environments (from now on “indoor” environments),
very different from those for which GNSS systems were originally
conceived, conventional GNSS receivers face some limitations that
still prevent them from being the global LBS enabler. These limi-
tations are mainly due to the high attenuation of signals, non-line-
of-sight (NLOS) propagation, multipath and the near-far or cross-
correlation problem [3, 4]. This latter case is of paramount impor-
tance in indoor scenarios, where high-sensitivity receivers have to
deal with very weak signals, and therefore become very vulnerable
to interferences.

This work has been partially supported by the Spanish Ministry of Econ-
omy and Competitiveness project TEC2014-53656-R.

This paper deals with the near-far detection problem at the ac-
quisition stage in indoor scenarios. In GNSS, satellites transmit a
direct-sequence spread-spectrum (DS-SS) signal with a particular
pseudorandom code, and one of the first operations performed by
GNSS receivers consists in correlating the received signals and the
local replicas of the spreading codes. In this sense, the near-far effect
is a condition in which a receiver is affected by a strong signal that
hampers the detection of a weaker signal [5], since the correlation
measurements are distorted by a powerful interference and the wrong
signal is acquired. It is particularly relevant in CDMA systems, such
as GNSS systems like GPS and the future Galileo. The presence of
near-far in GNSS is due to the fact that the cross-correlation between
the codes of the strong and weak signals is comparable to the auto-
correlation peak of the weak signal that is wanted to be acquired.

The presence of near-far may lead to the following three situ-
ations: weak signals from satellites in view are not detected; weak
signals from satellites in view are detected but the measured pseu-
dorange has a huge error; a satellite not in view is declared to
be present. Thus, near-far detection becomes important in high-
sensitivity GNSS receivers; if interfering signals are well detected,
the affected satellite can be discarded and the user’s position can be
estimated correctly by using the rest of available satellites. Although
being beyond the scope of this paper, near-far mitigation techniques
may be applied in a more sophisticated approach to re-enable the
affected satellite. But for this purpose, near-far detection is an initial
necessary step before mitigation.

In the literature, many techniques for near-far detection can be
found. For instance, multiple-snapshot techniques [6] exploit the
frequency and time variability of the near-far interference, which
can be detected by observing inconsistent variations along time in
the measurements. However, the assumption of the random nature
of near-far interference effects is not valid in many situations.

In the literature of single-snapshot techniques, conventional so-
lutions account for different aspects of the correlator output at an ob-
servable level. The solution in [7] detects a potential near-far inter-
ference by looking at the difference in power of the received signals,
but this technique presents the drawback of requiring coarse acquisi-
tion of all the received signals. Besides, its performance is poor since
near-far interference also depends on the difference in frequency and
Time-Of-Arrival (TOA) [8], which translates into a large latency of
the position computation. The contribution in [9] proposes a refined
version of this detector, which accounts for the power ratio between
the largest two correlation peaks. It has low computational com-
plexity, and it presents the advantage of being used after each single
signal is acquired, leading to faster localization.

On the other hand, since near-far interference can be modeled
as some kind of structured or coloured noise, single-snapshot tech-
niques are low-complexity algorithms that can use the statistical do-
main of the squared cross-correlation samples for near-far detection,
instead of the time and frequency domains. In this regard, it must be
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mentioned that, to the authors’ knowledge: 1) few efforts have been
made in the literature on statistical single-snapshot techniques ap-
plied to near-far detection; 2) these are focused on GPS signals. For
instance, the publication in [10] proposes a detector based on the
different statistical model of the squared cross-correlation measure-
ments for zero and non-zero interference (also known asH0 andH1

hypotheses, respectively), and it measures the difference between the
probabilities of surpassing a given threshold under each hypothesis.
If the difference is high, near-far is present.

The present paper contributes with an exhaustive analysis of sta-
tistical single-snapshot techniques for near-far and their characteri-
zation in indoor environments for high-sensitivity Galileo receivers,
particularly for Galileo E1C signals for civilian use. The detector in
[10] is included in the analysis, and a method to determine its opti-
mal threshold is presented. Besides, two exising techniques whose
application to near-far detection problems is novel are considered,
namely the Chi-Square Goodness-Of-Fit and a modified version of
the Kullback-Leibler divergence. Such techniques fit perfectly into
the group of techniques for statistical analyses, and they stand out by
their simplicity, thus being very attractive for real handheld GNSS
receivers. All these approaches outperform previous detectors [9].

The rest of the paper is organised as follows. In Section 2 the
near-far detection problem is presented, and the inherent protection
of Galileo E1C spreading codes is evaluated through simulations,
since its value needs to be known to assess near-far detection tech-
niques. In Section 3 the techniques studied in this paper are intro-
duced, and a novel method to determine their decision thresholds for
a given probability of near-far false alarm is presented. Section 4
shows the simulation results and the enhanced performance of the
proposed techniques compared to older methods. Section 5 draws
the conclusions.

2. PRELIMINARIES ON NEAR-FAR DETECTION

2.1. Signal model and statement of problem

Let Xp be the 2D time-frequency acquisition matrix containing the
squared cross-correlation samples for the pth satellite. Such matrix
can also be expressed as Xp (τ, f). Let Xp (τ, f0) be an array from
Xp (τ, f) containing all possible code delays for the Doppler shift
f0 where the signal is located. Let Xp (τ̃ , f0) be a reduced version
of Xp (τ, f0) where the main peak and the samples inside one chip
on each side are excluded.

When near-far is absent, the correlator output is dominated by
thermal noise for code delays farther than one chip away from the
main peak. Therefore, the squared correlation samples follow a χ2

distribution with 2NI degrees of freedom, where NI is the number
of non-coherent integrations; in this paper NI = 3. On the other
hand, when near-far is present, the correlator output is dominated
instead by cross-correlation between spreading codes, and in this
case the statistics are not perfectly known. These two conditions
lead to the signal model in (1).

Xp (τ̃ , f0)
H0∼ χ2

Xp (τ̃ , f0)
H1� χ2

(1)

Single-snapshot techniques aim at exploiting this uncertainty to
detect the presence of near-far by evaluating how much the correla-
tor output affected by near-far differs from a χ2 distribution. The
stronger the near-far effect is, the higher such difference is. For this
reason, they are also known as distance to χ2 distribution techniques.
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Fig. 1. Mean statistical distributions of squared correlation output
samples, for different values of input NFR.

2.2. Inherent protection of spreading codes against near-far

GNSS signals possess an inherent protection against near-far effects,
but such protection is limited to a certain upper bound, since the
spreading codes used in GNSS are not completely orthogonal. In
indoor environments and urban canyons, where signal attenuation
can be up to 30 dB when propagating through concrete walls [11],
the difference between C/N0 of desired signals and interfering ones
(i.e. near-far ratio, NFR) can surpass the protection threshold, and
thus the inherent protection is not enough to withstand near-far.

For GPS L1 the protection is about 24 dB for zero Doppler shift
in narrow-bandwidth receivers, whereas for any non-zero Doppler
shift it decreases to 21.1 dB [12]. For Galileo E1C, the protection
can be up to 27 dB for zero Doppler shift. However, no reference to
Galileo E1C with non-zero Doppler shift is made in the literature.

In order to evaluate the degradation that the correlator output
suffers in the presence of near-far, figure 1 shows an example with
the empirical probability density function (pdf) for different values
of input NFR. For 50 Monte Carlo iterations and a C/N0 of 15 dB-
Hz, simulations are carried out for random values of Doppler shift
following a uniform distribution in the range [-50, 50] Hz. For an
input NFR of 22 dB, all empirical distributions match perfectly the
ideal near-far-free distribution, whereas for an input NFR of 24 dB
a 23.91% of the iterations are affected by near-far, since they differ
from the ideal distribution. We can conclude from this that the in-
herent protection for non-zero Doppler shift Galileo E1C signals is
23-24 dB.

3. STATISTICAL NEAR-FAR DETECTION TECHNIQUES

This section introduces the near-far detectors that are included in the
simulation campaign described in Section 4. In general terms, these
techniques rely on a given detection threshold to determine whether
near-far is present or not. Section 3.4 describes the computation
of such detection threshold for a given probability of near-far false
alarm.

3.1. Chi-Square Goodness-Of-Fit

The chi-square Goodness-Of-Fit technique is popularly used in eco-
nomics and biology for hypothesis testing, but it has been rarely used
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for near-far detection purposes. It has the objective to test a claim
that a set of data follows a particular distribution (in this particular
case a χ2 distribution), and it has the advantage of being applicable
to any GNSS modulation.

To apply the chi-square GoF technique to a given satellite p, the
pdf of Xp (τ̃ , f0) is estimated from correlation measurements and
divided into k bins or categories. This gives as a result an observed
probability Oi of each ith bin which is compared to the expected
probability Ei, which corresponds to the analytical χ2 distribution
in the abscence of near-far. From these, the test statistic for the chi-
square GoF is computed as (2) [13].

TChiSquareGOF =

k∑
i=1

(Oi − Ei)2

Ei
(2)

3.2. Modified Kullback-Leibler divergence

Similarly to the chi-square GoF, the Kullback-Leibler divergence is
rarely used in interference detection. It is typically used in digital
communications systems, but its application to near-far detection is
a novel contribution of this paper. However, a modified version of
the KL divergence is presented here, with the objective to enhance
the sensitivity of near-far detection.

The modified KL divergence differs from the chi-square GoF
only in the way the test statistic is computed. Hence, the same op-
erations in Section 3.1 prior to computing the test statistic of the
chi-square GoF apply to the modified KL divergence. After comput-
ing the bins of the expected E and observed O distributions, the test
statistic for this detector is the KL distance computed as (3),

TModifiedKL =

k∑
i=1

∣∣∣∣Oi ln(OiEi
)∣∣∣∣ (3)

where the absolute value of each element makes the difference to the
original KL divergence. It is used so that positive values of the log-
arithm are not cancelled by negative values in the resulting metric.
This ensures that a greater value of distance is obtained.

3.3. Probability of threshold crossing

The threshold crossing technique is based on computing the proba-
bility that the correlator output samples exceed a given threshold θ,
and it relies on the fact that such probability is higher in the pres-
ence of near far. It is computed from the correlator measurements
and then compared to the theoretical probability under the H0 con-
dition. The technique exploits the difference between both probabil-
ities. Therefore, its implementation requires the following steps:

1. Starting with Xp (τ̃ , f0), fix a value for the threshold θ.

2. Count the number of samples, N , of Xp (τ̃ , f0) that exceed
the threshold θ.

3. The test statistic is simply the value of N scaled by the
total number of correlation samples Nt (i.e. the length of
Xp (τ̃ , f0)), as shown in (4).

TProbThCross =
N

Nt
(4)

The threshold θ determines whether the difference between both
probabilities is high or not, and an optimal value of θ has to be found,
so that the technique is fully optimized. The method proposed here
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Fig. 2. Difference between mean probabilities of threshold crossing
under H1 and H0 hypotheses versus mean probability in H0, for
different values of input NFR.

consists in choosing the value that maximizes the difference between
the mean probabilities of threshold crossings under H0 and H1 hy-
potheses, see (5).

θoptimal = arg max
θ

(E [N |H1]− E [N |H0])

Nt
(5)

By running simulations with different possible values of θ, the
results for different values of input NFR are shown in figure 2. The
calculation in (5) presents a maximum value for a given threshold
θ, which is very similar for all values of NFR and optimizes the
performance of the technique.

3.4. Computation of near-far detection thresholds

Each algorithm presented in this section is characterized by its cor-
responding test statistic and detection threshold. The decision on the
presence of near-far is made by computing such test statistic on the
correlation outputs, and further comparing the result to the detection
threshold; if the test statistic exceeds the threshold, near-far is de-
clared to be present. Therefore, the value of the detection thresholds
needs to be determined. The method proposed here has the particu-
larity that near-far detection thesholds can be set for a given proba-
bility of false alarm. The method consists in the following steps:

1. Consider the H0 condition and compute the test statistic of
the detector under test for many Monte Carlo iterations (i.e.
NMC Monte Carlo iterations), so that many realizations of
the test statistic are available. This results in a set of NMC

available values of the test statistic.

2. Compute the empirical cumulative density function (cdf) of
the previous set of values.

3. Choose a probability of false alarm PFA. The threshold is the
value for which the cdf is (1− PFA).

This method ensures that N/NMC ≤ PFA, where N is the
number of realizations whose value exceeds the threshold. These
values correspond to false alarm situations, where near-far is de-
tected but the signal is interference-free since the H0 hypothesis is
being considered.
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4. SIMULATION RESULTS

In this section, simulation results are provided to compare the per-
formance of the techniques presented in Section 3. A synthetic sig-
nal is used in simulations, which are carried out in the line of high-
sensitivity receivers (i.e. C/N0 of 15 dB-Hz and 10 dB-Hz). An
input NFR of 24 dB is considered for the following two reasons: 1)
it is the limit inherent protection of spreading codes; 2) it is the case
where the statistics of the correlation samples are less affected by
near-far (i.e. detection is more difficult).

Simulation results are provided in terms of ROC functions,
where the probability of near-far detection is plotted versus the
probability of false alarm. To do so, 500 Monte Carlo iterations
are considered, where the Doppler frequency and code phase take
uniform random values in the range of [-50, 50] Hz and [0, 4091]
chips, respectively, with an estimation resolution of 1 Hz and 0.001
chips. Figure 3 shows, for a C/N0 of 15 dB-Hz, the ROC functions
of the selected near-far detectors, whose performance is compared to
the peaks ratio detector in [9]. For the mentioned limit value of input
NFR, near-far is detected, starting with probabilities of detection of
around 25% for very small probabilities of false alarm.

This is applicable to all techniques, and they all outperform the
peaks ratio detector. It shows the worst performance for all probabil-
ities of false alarm (i.e. smallest probability of detection). Moreover,
its starting probability of detection is around 20%, and since spread-
ing codes fail at 23.91% of the cases at inherently masking near-far,
this involves a 3.91% of cases in which near-far is neither masked
by spreading codes, nor detected by the technique. On the other
hand, the threshold crossing detector shows the best performance
(i.e. highest probability of detection) for probabilities of false alarm
until up to 50%. For this to be valid, the optimal intermediate thresh-
old is chosen, and according to previous figure 2, for an input NFR
of 24 dB it is such that E [N |H0] /Nt = 2.963%. The performance
of the threshold crossing detector is followed by the chi-square GoF
and the KL distance detectors.
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Fig. 4. ROC function of near-far detectors, for input NFR of 24 dB
and C/N0 of 10 dB-Hz.

Simulations are repeated for a C/N0 of 10 dB-Hz, and the ROC
curves of all techniques are shown in figure 4. The results are very
similar to those for C/N0 of 15 dB-Hz. The threshold crossing de-
tector reaches a starting probability of detection around 30%, and it
is still the technique which performs best. Nonetheless, in this case
the chi-square GoF and the KL divergence detectors show very sim-
ilar performance to the threshold crossing detector, involving lower
computational burden, and thus making them good candidates to
substitute traditional interference detectors in software receivers.

5. CONCLUSIONS

This paper has presented an exhaustive analysis of statistical near-far
detection techniques for high-sensitivity GNSS receivers. To study
them, the inherent protection value of spreading codes with non-zero
Doppler shift has been evaluated, and a particular algorithm to deter-
mine the detection thresholds for a given probability of near-far false
alarm has been used. The chi-square GoF technique and a modified
version of the Kullback-Leibler divergence have been presented as
novel detectors rarely used in near-far detection. The detector in
[10] has been included in the analysis, and a method to determine its
optimal threshold has been introduced.

The simulation results have shown that the proposed techniques
outperform older approaches [9] in all cases. The probability of
threshold crossing detector is the one which performs best, pro-
vided that the optimal intermediate threshold is chosen. The de-
tector performs better than the chi-square GoF and the modified KL
distance techniques, at the expense of being a more complex tech-
nique since the algorithm includes finding such optimal threshold.
However, for high-sensitivity receivers (i.e. C/N0 of 10 dB-Hz) the
chi-square GoF and the KL detectors perform very similarly to the
threshold crossing technique. Thus, both become high-performance
low-complexity detectors, with very low power consumption, and
these advantages make them very attractive to be implemented in
real handheld receivers such as smartphones.
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