
DESIGN SPACE EXPLORATION FOR HARDWARE-EFFICIENT STOCHASTIC
COMPUTING: A CASE STUDY ON DISCRETE COSINE TRANSFORMATION

Bo Yuan1, Chuan Zhang2 and Zhongfeng Wang3

1 Department of Electrical Engineering, City University of New York, City College

2 National Mobile Communication Research Laboratory, Southeast University
3 Broadcom Corporation

ABSTRACT

In recent years stochastic computing (SC) is re-gaining
increasing attention for its unique advantages on low
hardware cost and strong error resilience that are the key
metrics for nanoscale CMOS era. However, the potential
deployment of SC in practical applications is impeded by
the long latency of sequential bit-stream and large
complexity of pseudo random number generator (PRNG).
Aiming to mitigate these challenges, this paper exploits the
design space for hardware-efficient stochastic computing
with a case study on 4-point discrete cosine transformation
(DCT). First, an efficient compensation mechanism is
proposed to solve the scaling problem of SC system. Then,
two approaches, namely Splitting-Shuffling (SS) and PRNG
sharing techniques are proposed to reduce the overall area
and processing latency, respectively. Analysis results show
that, sustaining the same computing accuracy, the joint use
of the proposed approaches leads to 44% reduction in area
and 49% reduction on latency than conventional SC design,
respectively.

Index Terms— Stochastic Computing, DCT, Splitting
and Shuffling (SS)

1. INTRODUCTION

Modern digital computing systems are built on number
representation. Although a number can be represented in
various ways, to date all the digital computing processors
adopt weighted binary representation for interpreting and
processing information. Generally in this binary computing
(BC) scenario a number that is represented by n bits has the
precision as 1/2n.

Different from the above conventional binary computing,
stochastic computing (SC) [1-2] represents the number with
the use of bit-stream. Here the value of number is
interpreted by the portion of bits “1” over the entire stream.
Based on this new representation scheme, the corresponding
stochastic arithmetic units that function approximately can
be developed with very simple logic gates. For instance, the
stochastic multiplication can be easily implemented with a
simple logic gate (AND or XNOR). This ultra-low hardware

This work is partially supported by NSFC under grant 61501116,
International Science & Technology Cooperation Program of China under
grant 2014DFA11640, Huawei HIRP Flagship under grant YB201504,
Jiangsu Provincial NSF under grant BK20140636, and ICRI-MNC.

cost may lead to significant reduction in both computation
and time complexity. In addition, the inherent redundancy in
number representation of SC also translates to stronger fault
tolerant capability that is a key metric in the current
nanoscale CMOS and emerging post-CMOS eras.

Despite the above potential advantages of SC, two
severe challenges pose obstacles to its practical applications.
First, in order to achieve the same 1/2n precision, BC only
needs n-bit-width data, while SC needs length-2n bit-stream,
thereby causing extreme long processing latency. Second,
the pseudo random number generator (PRNG) that provides
the randomness of the bit-stream has very large area, and
hence overtakes the original simplicity of SC system.

Aiming to mitigate these challenges, this paper exploits
the design space for hardware-efficient SC system and
proposes a set of approaches. First, an efficient
compensation mechanism is proposed to tackle the scaling
problem of SC system. Then, two approaches, namely
Splitting-Shuffling (SS) and PRNG sharing techniques are
presented to reduce the overall area and processing latency
of SC system, respectively. The proposed approaches are
applied to 4-point discrete cosine transformation (DCT) as
case study. Analysis results show that the joint use of the
proposed approaches lead to 44% reduction in area and 49%
reduction on latency than conventional SC design,
respectively without accuracy loss.

The rest of this paper is organized as follows. Section 2
gives brief review of SC and DCT. The proposed
approaches are presented and applied to DCT in Section 3.
Section 4 analyzes the computation accuracy and hardware
performance of stochastic DCT. The conclusions are drawn
in Section 5.

2. REVIEW OF SC AND DCT

2.1. Stochastic Computing
As indicated in Section 1, SC system utilizes a stream of bits
to represent number. Fig. 1(a) illustrates such representation
of 0.625 with a length-8 bit-stream. Notice that in this
example because each bit weights equally, a number can be
represented by different streams.

Based on this redundant representation, various basic
arithmetic functions can now be implemented via stochastic
circuits. Fig. 1 (b)(c)(e)(g) shows the corresponding
stochastic implementations for different functions. In

6555978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

addition, the conversion blocks between binary
representation and stochastic representation are shown in
Fig. 1(d) and Fig. 1(f), respectively. Notice that here bipolar
form [1-2] is adopted for SC system since the studied DCT
in this paper involves with negative number. For the details
of these basic SC circuits, the reader is referred to [1-2].

M
u

x

Fig. 1. SC system: (a) Representation (b) Multiplication (c)
Scaled addition (d) Binary to stochastic (B2S) conversion (e)
Scaled subtraction (f) Stochastic to binary (S2B) conversion
(f) Scale (linear gain).
2.2. Discrete Cosine Transformation
Proposed in 1974, discrete cosine transformation (DCT) [3]
has become a powerful tool in information processing
applications because of its unique energy compaction
property. To date DCT is widely used in many audio and
image-related scenarios, such as JPEG, MPEG, MP3 and so
on.

According to its different definitions, DCT has various
types. In this paper we choose the Type-II DCT (DCT-II) as
the studied case. Generally, for an N-point DCT-II, the
transformation function is shows in (1):

1

0

(2 1)
) () () cos[]

2

N

n

n k
X k a k x n

N

 （ , k=0, 1, …, N-1 (1)

where a(k)=1/ 2 if k=0; otherwise a(k)=1. For the detail
of DCT, the reader is referred to [3].

3. STOCHASTIC DISCRETE COSINE
TRANSFORMATION

In this section, with a case study on 4-point DCT, a set of
approaches that enable the reduction on latency and area of
SC system are proposed. First, we present a straightforward
design of stochastic DCT. Then, various hardware-level
optimizing techniques are developed to improve the
hardware performance of the SC system.
3.1. A straightforward design of stochastic DCT

For the example 4-point DCT, the computation of (1) can be
re-described via matrix transformation as shown in (2):

1 / 2 1/ 2 1/ 2 1/ 2

3 3(0) (0)cos cos cos cos
8 8 8 8(1) (1)

(2) (2)cos cos cos cos
4 4 4 4

(3) (3)
3 3

cos cos cos cos
8 8 8 8

X x

X x

X x

X x

 (2)

Notice that in (2) each row of the 4-by-4 transformation
matrix is either systematic or anti-systematic. As a result,
according to this matrix form, the 4-point stochastic DCT
can be developed with a butterfly architecture [4] using the
basic stochastic blocks in Fig. 1. Here since each multiplier
(Mul) in Fig. 1(b) has one constant input as the entry of
matrix in (2), the signal line for that fixed input is not
depicted in this figure. Notice that these constant bit-streams
can be generated by simple logic instead of complex PRNGs.

Fig. 2. Straightforward architecture of SC DCT.
3.2. Scaling problem
As indicated in Fig. 2, a stochastic scale block (see Fig. 1(g))
is needed for each output of DCT since the stochastic
addition or subtraction (see Fig. 1(c) and (d)) is the scaled
version. However, the use of such stochastic scale block
causes two problems: 1) This finite state machine (FSM)-
based block needs a number of states to guarantee the
accuracy, thereby increasing the hardware cost of the entire
system. 2) With the sequential logic, the stochastic scale
block has escalating accuracy loss as the linear gain
increases. Since the linear gain that is needed in N-point
DCT is 2^(log2N)=N, that means for large N cases the
accuracy loss caused by this stochastic scale unit is very
severe.

Fig. 3. SC DCT with new compensation scheme.
 In order to tackle this challenge, we propose a new
scaling scheme for stochastic DCT. Fig, 3 shows the
architecture of the new design for 4-piont DCT. The key
idea of this approach is to perform the stochastic-to-binary

6556

(S2B) conversion earlier than the straightforward design,
and then use the shift operation to scale the outputs. As a
result, the original complex FSM-based scale blocks are
replaced by the wire-based shifting circuits with very low
hardware cost. In addition, the original accuracy loss caused
by the scale unit is now avoid at the same time.
3.3. Splitting-Shuffling (SS)
3.3.1. Splitting and shuffling bit-stream

Existing research results [5-9] have shown that one key
factor that affects the computation accuracy of SC system is
its inherent correlation. In general, two types of correlation,
as inter-stream and intra-stream correlations, occur when the
bit-streams propagate over the SC system. In order to
eliminate these correlations and avoid the accuracy loss, re-
randomizing the bit-stream is a common and critical strategy
for devising high-performance SC system. A
straightforward re-randomizing approach is to utilize a pair
of S2B and binary-to-stochastic (B2S) blocks for each target
stream, and then makes the streams re-gain the randomness.
However, this method requires a large amount of additional
S2B and B2S blocks, thereby overtaking the simplicity of
stochastic engine. Even worse, this approach also leads to
significant increase in latency since extra m=2n cycles are
needed for the additional S2B and B2S blocks, respectively.
Consider SC system already suffers from long latency
problem; this extra timing cost further worsens this
drawback.

In this subsection we propose a novel splitting and
shuffling (SS) technique to make bit-stream re-gain the
randomness with very small cost. The key idea of the SS
approach is to split the original bit-stream into multiple
segments, and shuffle those segments when necessary. Fig.
4(a) shows an example SS scheme for length-8 bit-stream
that is split to 4 segments. It can be seen that, with the use of
the proposed approach, the new stream outperforms the
original one in terms of switching activity that is an
important metric to measure the randomness of bit-stream.
More importantly, this SS technique offers substantial
benefits on hardware performance: 1) Since this shuffling
network only needs extra wire, the hardware cost of the SS
approach is extremely low. 2) Segmenting the bits-stream
leads to immediate linear reduction in latency, thereby
mitigating this long-standing problem for SC systems.
3.3.2. Selection of shuffling scheme

Although SS technique provides a low-cost solution for
re-randomizing the bit-stream, without of use of PRNG
makes its capability on randomness unguaranteed in theory.
Therefore, the proper choice of shuffling scheme is of
significant importance to the performance of this approach.

In general, two factors determine the re-randomizing
capability of the SS technique. The first factor is the number
of the split segments, referred as s. In most cases the
randomness of the new bit-stream increases as s increases.
This phenomenon can be interpreted in an intuitive way.

When s becomes large, it means each segment contains just
a few bits. In that case, shuffling these segments
significantly breaks the correlations among the original
consecutive bits. The second factor is the shuffling scheme.
For instance, in Fig. 4(a) the use of the “regular” shuffling
scheme renders the switching activity increase from 1 to 2,
while an “irregular” shuffling scheme in Fig. 4(b) enables
the output bit-stream with switching activity as 4. Therefore,
the generated stream in Fig. 4(b) has stronger randomness
than that in Fig. 4(a).

(a)

(b)

Fig. 4. 4-segment SS with (a) regular shuffling (b)
inrregular shuffling.

Due to the importance of shuffling scheme, it is necessary
to explore its design methodology. A general principle is to
shuffle the original neighbored segments as far as possible.
This is because such strategy can further reduce the
correlation among the successive bits in the original stream.
This strategy also explains the phenomenon why Fig. 4(a)
and Fig. 4(b) have different randomness. In Fig. 4(a), most
segments in the new stream are still neighbored by their
original adjacent segments. On the other hand, in Fig. 4(b)
the original neighbored segments are now distanced with at
least one segment. As a result, the correlation in the original
bit-stream is significantly reduced.
3.3.3. PRNG sharing

With the use of the SS technique, the entire data path of
the SC system needs to be re-designed. In general, all the
basic stochastic arithmetic units are duplicated to s copies to
be compatible with s-segment strategy. Correspondingly, the
B2S units at the input end should also be reformulated in
this scenario. Fig. 5(a) shows a straightforward design for
this reformulation. Here with s-segment SS scheme, the
original B2S unit that receives one input becomes a stacked
B2S unit. As seen in Fig. 5(b), this stacked B2S unit utilizes
s PRNGs to generate s segments of bit-stream. Therefore,
for an N-input SC system, such as the example N-point DCT,
the total number of required PRNGs is N×s. Consider
PRNG has the dominated area than any other stochastic
arithmetic units; the entire s-segment SC system incurs
significant increase in hardware complexity.

To address this problem, we propose a PRNG sharing
scheme and devise an s-level B2S unit for s-segment

6557

scenario. Fig. 5(c) shows the interplay between the s-level
B2S and the stochastic engine. The inner architecture of s-
level B2S unit is illustrated in Fig. 5(d). It can be seen that
each s-level B2S unit does not contain individual PRNGs
but shares s PRNGs that generates s random numbers (RN).
Specifically, RNj, as the random number that is output by
PRNGj, is sent to all the s-level B2S units to generate the j-
th segment of the corresponding bit-streams, where 1≤j≤s.
Therefore, the total number of PRNGs is reduced by N times.
Notice that because the N s-level B2S units use the same
random numbers in each cycle, different shuffle networks
are configured in different s-level B2S units to break the
correlation. As a result, the segments of bit-stream for
different input are still pseudo-independent.

i,1

i

1

i

t

i

t

1

s
1

s i

1

s
i

1

s
s

t

1

s

2

1

2

s

i,s
i,s

i,1

i

i

t

i

Fig. 5. (a) SC system with stacked B2S. (b) Stacked B2S. (c)
SC system with s-level B2S. (d) s-level B2S.

4. RESULTS AND DISCUSSION
4.1. Results
With the use of the set of optimizing approaches in Section
3, the hardware-efficient stochastic DCT can now be
developed. Here for the example 4-point DCT, s=2 is set for
the SS and PRNG sharing techniques. Fig. 6 shows the root
mean square error (RMSE) and signal-noise-ratio (SNR) for
different stream-lengths. It can be seen that compared with
the conventional stochastic DCT, the proposed optimized
design does not have computation accuracy loss.

More importantly, the proposed design shows great
advantages with respect to hardware performance. Table 1
summarizes the estimated hardware complexity and latency
of the stochastic 4-point DCT designs. It can be seen that the
joint use of optimizing approaches lead to 44% reduction
and 49% in area and latency, respectively.
4.2. Discussion
4.2.1. Area-Latency tradeoff
Table 1 shows that the proposed design achieves the
simultaneous reduction in latency and gate count. At the
first glance this phenomenon seems to violate the general
principle of VLSI DSP transformation [4]; however the use
of PRNG sharing technique can give a proper explanation.
From Table 1 it is seen that with nearly 50% reduction in
latency (2 segments for each bit-stream), the complexity of

stochastic engine is indeed doubled. However, because
PRNG has much larger area than any other stochastic
arithmetic units, the reduced use of PRNGs (from N to s)
brought by PRNG sharing technique naturally enables the
propose design achieve significantly lower complexity.
Notice that this advantage on low cost will even be
enhanced as N increases when entire SC system scales up.
4.2.2. Scope of application of the SS technique
It should be noted that the scope of the proposed SS
technique is limited to the combinational-logic-only SC
system. In such application, the consecutive bits in each
stream is independently generated, hence splitting the
stream does not affect the computation accuracy. However,
in the sequential-logic-based SC system data dependency
between the consecutive bits is required for functional
validity, therefore splitting the bit-stream and processing
them in parallel will eliminate the data dependency between
the last bit of the i-th segment and the first bit of the (i+1)-th
segment, thereby causing accuracy loss. In general, this
accuracy loss will become worse with the increase of s.

Fig. 6. RMSE and SNR of 4-point SC DCT.

Table 1. Performance of 4-point SC DCT (m=1024)

4-point DCT
Original
Design

Optimized
Design

of 1024-length PRNG 4 2

Stochastic
Engine

of XNOR 6 12
of 1-bit MUX 8 16

of 10-bit-Comp 4 8
of 16-state FSM 4 0

of 1-input 10-bit Counter 4 0
of 2-input 10-bit Counter 0 4

of 1-bit Register for pipeline 4 8
Total gate counts 4318 2404

Normalized Critical Path 1 1
Latency (cycles) 1025 514

5. CONCLUSION

This paper exploits a set of optimizing techniques for
hardware-efficient stochastic computing system. A case
study on 4-point DCT is performed. Results show that the
proposed approaches enable significant reduction in both
latency and complexity.

0 500 1000 1500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Length of stream

R
M

S
E

original SC DCT

optizmized SC DCT

0 500 1000 1500
0

2

4

6

8

10

12

14

16

18

Length of stream
S

N
R

(d
B

)

original SC DCT

optizmized SC DCT

6558

6. REFERENCES

[1] B. Gaines, “Stochastic computing systems,” Advances in
Information Systems Science, vol. 2, no. 2, pp. 37–172, 1969.

[2] B. Brown and H. Card, “Stochastic neural computation I:
computational elements,” IEEE Trans. Comput., vol. 50, no. 9, pp.
891-905, Sept. 2001.

[3] N. Ahmed, T. Natarajan and K. R. Rao, "Discrete Cosine
Transform", IEEE Trans. on Comput. vol. C-23, no.1, pp. 90–93,
Jan. 1974.

[4] K. K. Parhi, VLSI Digital Signal Processing Systems: Design
and Implementation, New York, NY: John Wiley & Sons Inc.,
1999.

[5] A. Alaghi, Cheng Li and John P. Hayes. “Stochastic circuits for
real-time image processing applications,” in Proc. of Design
Automation Conference (DAC), pp. 1-6, 2013.

[6] A. Alaghi and J. P. Hayes, “Fast and accurate computation
using stochastic circuits,” in Proc. of Design, Automation and Test
Conference in Europe (DATE), pp. 1-4, 2014.

[7] Peng Li, David J. Lilja, Weikang Qian, and Kia Bazargan,
“Computation on stochastic bit streams: Digital image processing
case studies,” IEEE Trans. on Very Large Scale Integrated (VLSI)
Systems, vol. 22, no. 3, pp. 449-462, April 2013.

[8] S. Sharifi Tehrani, W. Gross and S. Mannor, “Stochastic
decoding of LDPC codes,” IEEE Commun. Lett., vol. 10, no. 10,
pp. 716–718, Oct. 2006.

[9] B. Yuan and K. K. Parhi, “Successive cancellation decoding of
polar codes using stochastic computing,” accepted by Intl. Symp.
on Circuit and Systems (ISCAS 2015).

6559

