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Abstract—In this paper, a low-complexity stochastic belief
propagation (BP) detector for large-scale MIMO is first proposed.
Its efficient hardware architecture, with parallel pipeline, is pre-
sented in detail. Thanks to the stochastic approach, all arithmetic
operations of the detector are implemented with simple logic
structures. Several approaches which can potentially improve
the detection performance are exploited. Simulation results have
demonstrated that the stochastic BP detector can achieve similar
detection performance compared with deterministic one for
32× 32 MIMO system with 4-quadrature amplitude modulation
(4-QAM). With the increase of antenna number, the detection
performance improves at the linear expense of complexity and
latency. Therefore, the proposed stochastic BP detector is suitable
for large-scale MIMO system applications with good balance of
detection performance and implementation complexity.

Index Terms—Large-scale MIMO, factor graph (FG), belief
propagation (BP), stochastic detector, parallel architecture.

I. INTRODUCTION

By transmitting multiple data streams concurrently within
the same frequency band, the multiple-input multiple-output
(MIMO) system successfully improves system capacity and
data rate compared to the single-antenna system. The result-
ing higher spectral efficiency and better link reliability have
made it increasingly popular in both academia and industry.
Nowadays, MIMO in combination with spatial multiplexing
has been adopted by the latest standards such as 3GPP LTE-
Advanced [1] and IEEE 802.11n [2]. In order to fulfill the ever-
increasing demands of future wireless communication, MIMO
systems are required to be equipped with an order of higher
magnitude of antenna arrays than the conventional ones. That
is how the popular concept of large-scale MIMO comes out.

Without a doubt, large-scale MIMO has ranked one of the
key technologies of 5G, with its significant improvement in
spectral efficiency, link reliability, and coverage over con-
ventional MIMO [3]. Unfortunately, its huge size hinders
the use of conventional deterministic detection approaches
such as maximum likelihood (ML) and minimum mean square
error (MMSE), since their computational complexity grows
drastically with the number of antennas.

Stochastic computation, which represents continuous values
by streams of random binary bits, can implement complicated
computations with simple logic gates. Therefore, it has drawn
increasing attentions from the fields of channel coding [4–6]
and signal processing [7]. Due to its advantages in hardware
efficiency and fault tolerance, it is believed that stochastic be-
lief propagation (BP) detection serves as an alternative solution
to this problem. Among the very few existing literatures, a

fully-parallel stochastic Markov Chain Monte Carlo (MCMC)
detector for a 4× 4 16-QAM MIMO system was proposed in
[8, 9], significantly reducing the implementation complexity
while achieving high detection throughput. However, this
approach turns out to be not suitable for large-scale MIMO
systems due to the significantly increasing complexity. To the
best knowledge of the authors, stochastic BP detection defined
over real domain is first proposed for large-scale MIMO
systems. Different antenna configurations are discussed. The-
oretical analysis and numerical results have demonstrated its
advantages in hardware efficiency and detection performance.

The remainder of the paper is organized as follows. Section
II presents the symbol-based BP detector based on factor
graphs (FGs), and the stochastic BP detector design for large-
scale MIMO system with 4-quadrature amplitude modulation
(4-QAM). The efficient hardware architecture is proposed in
Section III. Numerical results and complexity comparison are
given in Section IV. Section V concludes the entire paper.

II. STOCHASTIC BP DETECTOR ON FGS

In the following, the large-scale MIMO uplink model with
M transmitting and N receiving antennas is considered. The
deterministic scalar and its stochastic version are denoted by x
and xs, respectively. The deterministic vector (or matrix) and
its stochastic version are denoted by x and xs, respectively.
For quantization, 1 sign-bit and k data-bits are employed to
represent a deterministic value. The length of stochastic stream
is then set as L = 2k.

A. BP Detection in Real Domain

Assume each entry of the complex transmitted vector is
mapped to one point of a rectangular complex QAM Θ with
||Θ|| = Q. The real transmitted vector, channel matrix, noise
vector, and received vector are denoted by x, H, n, and r,
respectively. Employing the real value decomposition (RVD)
scheme [10], the equivalent real system model is given by

r = Hx+ n, (1)

where r = [r1, r2, . . . , r2N ]T , x = [x1, x2, . . . , x2M ]T , and
H = {hj,i}1≤j≤2N,1≤i≤2M . Note that xi ∈ Ω, where Ω
denotes the set of in-phase or quadrature parts of points in
the complex constellation Θ.

We define the transmitted signals {x1, x2, . . . , x2M} and
received signals {r1, r2, . . . , r2N} as “symbol nodes” and
“observation nodes”, respectively. The messages from xi to
rj and from rj to xi, are denoted by αxi→rj and βrj→xi ,
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respectively. The message updating procedure of BP algorithm
is illustrated in Fig. 1. Details of symbol-based BP detection
in real domain [11] are listed in Algorithm 1.
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Fig. 1. Message passing between variable nodes and observation nodes.

Algorithm 1 BP Detection Based on FG

Input: r ∈ R2N ,H ∈ R2N×2M , s ∈ R
√
Q,Var{n} = σ2.

Iteration:
1: ∀i, j,p(0)

i,j = p
(0)
xi→rj = (p

(0)
i,j (s0), . . . , p

(0)
i,j (s

√
Q−1))

2: p
(0)
i,j (sk) = 1/

√
M

3: for l = 1 : L do
4: for j = 1 : 2N do
5: µzj =

∑2M
k=1 hj,ks

Tpj,k

6: σ2
zj =

∑2M
k=1 h

2
j,k

(
(s⊙ s)Tpj,k − (sTpj,k)

2
)

7: for i = 1 : 2M do
8: µ

(l)
zj,i = µzj − hj,is

Tpj,i

9: (σ2
zj,i)

(l)=σ2
zj−h2

j,i

(
(s⊙s)Tpj,i−(sTpj,i)

2
)
+σ2

10: ∀s, β(l)
j,i (s) =

2hj,i(rj−µ(l)
zj,i

)(s−s0)−h2
j,i(s

2−s20)
2(σ2

zj,i
)(l)

.

11: end for
12: end for
13: for i = 1 : 2M do
14: ∀s, γ(l)

i (s) =
∑2N

k=1 β
(l)
k,i(s)

15: for j = 1 : 2N do
16: ∀s, α(l)

i,j(s) = γ
(l)
i (s)− β

(l)
j,i (s)

17: ∀s, p(l)i,j(xi = sk) =
exp(α

(l)
i,j(s))

1+
∑

sm∈Ω

exp(α
(l)
i,j(sm))

18: end for
19: Symbol-based decision: γ ⇒ x̂i = sk
20: end for
21: end for
22: Output: Estimated symbol x̂.

B. Stochastic Real Multiplication (SRM)

Assume 2 inputs are xs and ys, and the output is zs. Their
deterministic values satisfy x, y, z ∈ [−1, 1]. The SRM is
implemented by an XOR gate and an AND gate in Fig. 2. The
sign-bit stream of zs is obtained by an XOR gate. An AND
gate is used to generate the absolute value stream of zs.

C. Stochastic Real Addition (SRA)

According to [12], the structure of SRA is given in Fig. 2.
The variable c(zs(t)), regarded as the carry-bit in a signed
addition, is used to improve the accuracy. Obviously, the
stochastic real subtraction (SRS) can be easily implemented
with an additional bit flipping of the sign-bit stream.
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Fig. 2. Hardware architectures of SRM and SRA.

D. Message Updating of Observation Nodes

According to Algorithm 1, a signed division operation is
required by the deterministic message updating of observation
nodes. Since σ2

zj,i > 0, the sign-bit of numerator is the same
as βj,i(+1). Therefore, we only need to calculate the absolute
value of βj,i(+1). In order to implemented the stochastic
division with a simple JK flip-flop, a scaled factor ε/

√
2 is

introduced to make sure |ε × hj,i(rj − µzj,i)| ≪ σ2
zj,i . Now

the stochastic message updating is expressed as follows:

βs
j,i=

εshs
j,i(r

s
j − µs

zj,i)

(σ2
zj,i)

s
≈

εshs
j,i(r

s
j − µs

zj,i)

sshs
j,i(r

s
j − µs

zj,i) + (σ2
zj,i)

s
, (2)

where ε = 1/32 is the empirical value.
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Fig. 3. Architecture for message updating of observation nodes.

For stochastic computing, the gradual loss of randomness
for bit streams will result in the latching problem. Therefore,
re-randomization operation, which estimates the deterministic
value and regenerates new uncorrelated stochastic stream, is
usually employed. In Eq. (2), the re-randomizations on µs

zj,i
and εs · hs

j,i(r
s
j − µs

zj,i) are required. The overall hardware
architecture for βs

j,i updating is illustrated in Fig. 3, where RR
and -X denote the re-randomization unit and bit flipping unit,
respectively. 2 -X units and SRA comprise SRS. Stochastic
number generator (SNG) in [8] is employed to generate signed
stochastic stream. The stochastic to deterministic convertor
(SDC) converts signed stochastic stream to deterministic value.

E. Message Updating of Symbol Nodes and Output Decision

In 4-QAM MIMO system, if |βj,i(+1)| ≪ 1, we have
αi,j(+1) ∈ [−1, 1]. As a result, γi(+1) can be efficiently
computed by the feedback architecture with only one SRA,
shown in Fig. 4. Here Ts denotes the system clock. To reduce
the complexity, a look-up table (LUT) is employed to compute
pi,j(+1), which will be discussed in Section III in detail.

6551



2
s

t n N LT= ´ ´

2 , 2, 1,
, ..., ,

s s s

N i i i
b b b

1,

s

i
b ,1

a s

i

s

i
g

2,

s

i
b ,2

s

i
a

2 ,

s

N i
b ,2

s

i N
a

SRA

LD

SRA
-X

SRA
-X

SRA
-X

Fig. 4. Architecture for stochastic message updating of symbol nodes.

The final decision is made based on the sign of γi after
I iterations, which is obtained from the stochastic stream γs

i

with a controllable up-down counter illustrated in Fig. 5.
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Fig. 5. Architecture for stochastic output decision.

III. HARDWARE ARCHITECTURE

In this section, architecture for the 4-QAM stochastic BP
large-scale MIMO detector is proposed. Here, i.i.d. Rayleigh
fading channel and no channel coding are assumed.

A. Empirical Selection of L

For implementation, the selection of bit stream length
ranks the key consideration. First, the normalized deterministic
detector with all signals normalized to [−1, 1] is obtained.
Second, fixed-point simulation is conducted to determine the
fractional width k. Finally, L is determined by L = 2k.

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
(dB)

B
E

R

 

 

M=N=32, Deterministic detector, float
M=N=32, Normalized deterministic detector, fixed
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Fig. 6. Performances of deterministic and stochastic detectors (4-QAM).

For 32 × 32 MIMO system, Fig. 6 shows the BER per-
formances of the float-point deterministic BP detector, fixed-
point normalized deterministic BP detector with 1 sign-bit and
k = 12 data-bits, and stochastic BP detector with L = 212.
The iteration numbers are 7, 12, and 12, respectively. Ac-
cording to Fig. 6, to achieve similar performance, fixed-point
methods need more iterations than the float-point one. Also,
the performance gap between the two fixed-point detectors are

negligible. Therefore, the stochastic BP detector with L = 212

is feasible for hardware implementation.

B. Hardware Architecture

For 4-QAM large-scale MIMO systems, the overall hard-
ware architecture of BP stochastic detector is presented in
Fig. 7. It is composed of 3 main modules: message updating
module for observation nodes, message updating module for
symbol nodes, and decision output module. Details of PE1 to
PE6 are given in Fig. 8. PE7 to PE9 shown in Fig. 3 to 5
carry out stochastic operations of observation nodes, symbol
nodes, and output decision, respectively. Units within the pink
solid bordered rectangle are the same. The scarlet letters at
the bottom of PEs denote the concurrent numbers.
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Fig. 7. Overall architecture of stochastic MIMO detector.

In real model of 4-QAM MIMO systems, assume the
normalized transmitted signal x equals to 1√

2
with probability

p. The mean and variance of x are given by

µx =
1√
2
(p+ p+ (−1)), σ2

x = (p− p2) + (p− p2), (3)

where µ, σ2
x ∈ [−1, 1]. Therefore, Eq. (3) can be implemented

by PE1 and PE2 in Fig. 8, where 1/
√
2 is replaced by its fixed-

point approximation. Square operation is implemented by the
structure in the green dotted bordered rectangle, where the
register D generates an uncorrelated bit stream with probability
psj,i. 4NM PE1’s and 4NM PE2’s are employed to generate
the stochastic streams of µx and σ2

x, respectively.
Since µzj and σ2

zj are pre-computed, complexity of updating
matrices µz and σ2

z is reduced from O(NM2) to O(NM).
Because µzj , σ

2
zj ∈ [−1, 1], stochastic implementations of µzj

and σ2
zj are shown as PE3 and PE4 in Fig. 8. Structures in the

blue dotted bordered rectangles perform addition operations.
2N PE3’s and 2N PE4’s generate the stochastic streams of
vectors µz and σ2

z , respectively. Stochastic stream of matrix
µz is obtained by the parallel architecture of 4NM PE5’s.
The similar implementation applies matrix σ2

z .
Mentioned in Section II, pi,j(+1) is obtained from an LUT.

In initialization, the signed fixed-point number A ∈ [−1, 1]
with 13 bits is employed as address to build up a data memory,
where the data D ∈ (0, 1). The relationship of A and D is:

D = (e
A

s/
√

2 )/(1 + e
A

s/
√

2 ), (4)

6552



SRA

SRA

SNG

,

s

j ip

1-
,j i

s

xm

PE1

SRM

1 2 SNG

SRM SRA

L D

2 st n M LT= ´ ´

,2 ,2 ,1
, ..., ,

j M j j

s s s

x x xm m m

,2 ,2 ,1, ..., ,s s s

j M j jh h h
j

s

zm

PE3

SRA

SRM SRA
D

-X

,

s

j ip

,

2( )
j i

s

xs

PE2

SRM
SRA

L D

,2 ,2 ,1

2 2 2( ) , ...., ( ) , ( )
j M j j

s s s

x x xs s s

,2 ,2 ,1, ..., ,s s s

j M j jh h h
2( )
j

s

zs
SRM

D

PE4

2 st n M LT= ´ ´

SRM

SRA
,

s

j ih

,
( )

j i

s

xm

,j i

s

zm
j

s

zm

-X

PE5

SRM

SRA

,

s

j ih

,

2( )
j i

s

xs

-X

SRM
D

2( )
j

s

zs
SRA

2( )svs

,

2( )
j i

s

zs
PE6

Fig. 8. Hardware architectures of PE1 to PE6.

where s/
√
2 is the scaling factor in Eq. (2). In the iterations,

stochastic expression αs is first converted to deterministic
matrix α. Then, we access the data memory of D in parallel
by employing the 13 bits of α as address bus.

IV. PERFORMANCE AND COMPLEXITY

A. Numerical Simulation Results

Simulation results of proposed fixed-point normalized de-
terministic (I = 7) and stochastic (I = 12) MIMO detectors
with different antenna configurations are given in Fig. 9.
Stochastic stream length L = 212. 3 configurations are:
M = N = 8, 16, and 32. Seen from Fig. 9, when M = N
is small, the performance of stochastic detector is poorer
than the deterministic one. However, its performance improves
as M = N increases, approaching that of the fixed-point
deterministic detector. This matches the theoretical behavior
of large-scale MIMO systems.
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Fig. 9. Performances with different antenna configurations (4-QAM).

B. Complexity and Latency Analysis

Assume the memory access latency is nTs. According to
the operating principle, SDC causes a delay of (L+log2L)Ts

in each operation. Seen in Fig. 2, 2 parallel registers in SRA
introduce a delay of Ts for each addition. The JK flip-flop
leads to a delay of Ts every time. For M ×N 4-QAM MIMO
systems, the hardware and latency of proposed stochastic
MIMO detector are listed in Table I. Seen from Table I, if M
(or N ) is constant, the hardware and latency increase linearly

with N (or M ). This means the stochastic BP detector is
suitable for large-scale MIMO systems.

TABLE I
HARDWARE AND LATENCY OF THE PROPOSED STOCHASTIC DETECTOR.

Modules

CMP MUX
24NM+2M+1 72NM+8N+4M

CNT JK SWT
8NM+4M 4NM 4(N+M)

D flip-flops
4(L+2 log2 L+20)NM+2(2L+5)N+2(log2 L+2)M+L

Gates

XOR AND
64NM+10N+2M 208NM+26N+10M

NOT XNOR & OR
20NM+2M 72NM+8N+4M

Memory 8K

Latency (Ts) ((2N+2M+1)L+2 log2 L+12)I+L+n

V. CONCLUSION

To sum up, the proposed stochastic BP detection works
well for large-scale MIMO systems, no matter what antenna
configuration is employed. This method is matrix inversion
free. Its performance improves with the increase of antenna
number, at the cost of linear increase of complexity and
latency. Therefore, it is suitable for large-scale MIMO systems.
Further work will be directed towards stochastic BP detector
with a low latency and high order modulations.
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