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ABSTRACT
Stochastic computing (SC) has received much recent atten-
tion due to its inherent fault-tolerance and low implementa-
tion cost compared to binary radix representations. SC has
been proposed for various signal processing applications such
as digital filters. The prior art in stochastic FIR filters can
accurately implement the desired filtering function for low-
order filters, however, their accuracy degrades as the filter or-
der increases. Moreover, stochastic IIR filters demonstrate
high hardware complexity and degraded accuracy. In this pa-
per, we propose an architecture for high-order FIR filters with
negligible accuracy loss compared to fixed-point implementa-
tion. The proposed architecture requires fewer random num-
ber generators. We also describe a novel cascaded second-
order direct-form II structure for IIR filters. The implementa-
tion results of the proposed design show an improvement in
latency and hardware complexity compared to the stochastic
architectures reported to date.

Index Terms— Dithered quantization, FIR/IIR filters,
stochastic computing, VLSI implementation.

1. INTRODUCTION

In recent years, stochastic computing (SC) has shown promis-
ing results for low-cost fault tolerant VLSI implementation
for a wide range of applications. Despite its advantages, SC
suffers from high processing time and low accuracy. There-
fore, SC was viewed as not suitable for applications which
require high accuracy such as digital filters. To overcome
the aforementioned issue, a lattice structure was proposed
for stochastic implementation of digital FIR/IIR filters [1, 2].
However, this approach is restricted to low-order digital fil-
ters.

In SC, a real value x ∈ [0, 1] is represented as a sequence
of random bits, Xi ∈ {0, 1}, i ∈ {1, 2, . . . , N}, where N
denotes the stream length. The number x corresponds to the
expected value of an element of the sequence:

E[Xi] = x, (1)

where E denotes the expected value. This stochastic repre-
sentation is known as the unipolar format. The bipolar for-
mat is also used for stochastic representation of a real number

x ∈ [−1, 1] by setting:

E[Xi] = (x+ 1) /2. (2)

Many SC operations can be performed with simple cir-
cuits. For instance, multiplications can be performed by us-
ing the AND gate in unipolar format, and a multiplexer can
be used to perform scaled additions. However, the use of
scaled adders degrades accuracy, and to overcome this is-
sue, the accumulative parallel counter (APC) was introduced
in [3]. The APC uses a binary tree-adder to perform additions
without discarding information bits as opposed to the scaled-
adder. Moreover, the output of APC is in binary radix domain.
Therefore, the APC is restricted to the applications requiring
information in binary domain after additions. Note that a bi-
nary to stochastic (B2S) converter can be used to convert the
binary output of the APC back to the stochastic domain, how-
ever, it increases the latency of the stochastic implementation.

To avoid using a B2S in middle of a stochastic circuit,
Integral SC was presented in [4] to perform computations
on integer stochastic stream while using conventional binary
adders to perform additions. Each element Si of the integer
stochastic stream represents a real value s ∈ [0,m] and can
be generated by summing up m binary stochastic streams as
follows:

Si =

m∑
j=1

Xj
i , (3)

where Xj
i denotes an element of stochastic stream Xj repre-

senting the real value xj ∈ [0, 1]. Then, the expected value of
the sequence element Si is given by:

s = E[Si] =

m∑
j=1

xj . (4)

The integer stochastic stream of a real value s in bipolar for-
mat can also be obtained in similar way as follows:

Si = 2×
m∑
j=1

Xj
i −m, (5)

and the value represented by the stream is

s = E[Si] = 2×
m∑
j=1

E[Xj
i ]−m = 2×

m∑
j=1

xj −m. (6)
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Fig. 1. Two conventional approaches used for stochastic im-
plementation of FIR filters by delaying (a) the stochastic se-
quence and (b) the binary numbers.

This paper firstly proposes a hardware implementation of
a high-order FIR filter using the APC. The proposed architec-
ture requires only two LFSR units independent of filter order.
Then, we propose a stochastic implementation of a second
order direct-form II structure of an IIR filter based on Inte-
gral SC. Therefore, a high-order IIR filter can be achieved by
cascading some second-order direct-form II structures.

2. STOCHASTIC IMPLEMENTATION OF FIR
FILTERS

A general M -tap FIR filter is formulated as follows:

y[n] = b0 ·x[n]+b1 ·x[n−1]+· · ·+bM−1 ·x[n−M+1]. (7)

Previously proposed stochastic implementations of FIR filters
normally use two different approaches to generate the delayed
version of inputs as shown in Fig. 1. In the first approach, Fig.
1(a), the inputs are converted to the stochastic stream which
are then delayed. In contrast, the binary inputs are delayed
and then their stochastic streams are generated as illustrated
in Fig. 1(b) in the second approach. Therefore, the first ap-
proach requires a total of N × (M − 1)-bit memory elements
in its delay line. The second approach uses more B2S units
adopted with different seed values as their initial LFSR value
to avoid the correlations among the stochastic sequences. The
inner product block denoted in Fig. 1 contains the stochas-
tic elements to perform the additions and multiplications [5].
Moreover, a stochastic lattice implementation of linear-phase
FIR filters is presented in [2] to reduce the hardware com-
plexity of traditional stochastic architectures. However, all
the aforementioned approaches are restricted to low-order fil-
ters while high-order FIR filters are required in many applica-
tions. To address this issue, a novel stochastic implementation
of FIR filter is proposed in the sequel of this section.
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Fig. 2. The proposed inner product architecture.

The additions in SC are traditionally performed by using
scaled-adders [6]. This adder consists of a multiplexer in
which its selector signal is connected to a stochastic stream
with probability of 0.5. The output of the multiplexer is
(E[A] + E[B])/2 where A and B are the inputs of the adder.
Therefore, to add a large number of inputs, a large stream
length is required for a stochastic implementation of FIR
filter to function properly. Note that increasing the stream
length results in high latency. To overcome this issue, the
APC is proposed in [3], which does not require a random
select signal. The APC is a tree-adder followed by an accu-
mulator. Therefore, the APC converts stochastic streams to
their binary forms. Our proposed stochastic implementation
of a FIR filter uses the high-level architecture illustrated in
Fig. 1(b) and the APC to perform additions and convert the
stochastic streams to their binary forms as depicted in Fig.
2. Since the high-order filter coefficients are small num-
bers, the multiplications are performed by using AND gates
in unipolar format, which results in more accurate results
compared to bipolar multiplications. Moreover, the additions
are correlation-free and multiplications only require different
seed values for each of its inputs in this architecture. There-
fore, two different seed values are required for the whole
design independent of filter order.

3. STOCHASTIC IMPLEMENTATION OF IIR
FILTERS

A transfer function of a M -tap IIR filter is represented by:

H(z) =
b0 + b1 · z−1 + · · ·+ bM−1 · z−(M−1)

1 + a1 · z−1 + · · ·+ aM−1 · z−(M−1)
. (8)

The practical way to implement a M -tap IIR filer is to use
direct-form II structure, which only requires M delay units.
However, direct-form II structure has a disadvantage. In [7],
it is shown that as the quality factor increases, the round-off
noise of this structure increases without bound. To overcome
this problem, high-order IIR filter are realized as a cascaded
series of second-order direct-form II structure. The general
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Fig. 3. The direct-form II structure for a second-order IIR
filter.

transfer function of this structure is given by:

H(z) =
b0 + b1 · z−1 + b2 · z−2

1 + a1 · z−1 + a2 · z−2
. (9)

Fig. 3 shows a general second-order direct-form II struc-
ture for a hardware realization. Assuming that the input and
coefficients lie in [−1, 1], the output and internal values may
be out of this range. Therefore, all the coefficients are first
scaled down to prevent the occurrence of the aforementioned
issue in the previously proposed stochastic implementation
of a direct-form I structure of an IIR filter, leading to the
huge performance loss in terms of error-to-signal power ratio
[5]. Moreover, cascaded series of second-order direct-form I
structure also result in high latency since the output of each
stage is converted back into the binary domain [5]. In [1],
a stochastic implementation of an IIR filter using the lattice
structure is proposed to improve the performance. However,
this architecture uses several binary multipliers which poten-
tially increase the hardware complexity. Therefore, an effi-
cient stochastic architecture for IIR filter is still missing.

In this paper, the Integral SC method is used for stochastic
implementation of the cascaded series of second-order direct-
form II structure of an IIR filter as depicted in Fig. 4. The
motivation for using this method is the fact that internal val-
ues and output of each stage lie to the range out of [−1, 1]
interval. Therefore, computations are performed by using In-
tegral SC computational elements introduced in [4]. In [4],
it was shown that additions are performed by using binary
adders, and multiplications can be performed by binary mul-
tipliers. The second-order direct-form II structure coefficient
values mostly lie in [−2, 2] and multiplications are then per-
formed using a multiplexer as shown in Fig. 5. For those
values which lie in [−1, 1], multiplications can be performed
by AND gate similar to conventional SC [4]. Note that if the
coefficient values are out of [−2, 2], they should be scaled
down to fit the mentioned interval. Otherwise, using a binary
multiplier is an inevitable approach.

The proposed architecture also raises a challenge for gen-
erating the integer stochastic stream. To generate an integer
stochastic stream S representing a real value s ∈ [−m,m] in
Integral SC, the real value s is first scaled down by 2dlog2(|s|)e
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Fig. 4. The proposed stochastic architecture of a second-order
IIR filter using Integral SC.
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Fig. 5. The Integral SC multiplier.

to fit in [−1, 1] interval. Then, 2dlog2(|s|)e number of the con-
ventional B2S units are used to generate different stochas-
tic streams. Finally, the generated streams are summed up
together to create an integer stochastic stream. Therefore,
2dlog2(|s|)e B2S units are required in this approach, which po-
tentially increases the complexity of the proposed stochastic
architecture.

To overcome the aforementioned issue, we used the
dithered quantization technique to generate the integer stochas-
tic streams. The dithered quantization is used in the audio
and video processing to randomize quantization errors [8]. In
general, a real number s ∈ [−m,m] is split down into two
parts, an integer and a fractional part. The integer and frac-
tional parts can be obtained as bsc and s − bsc, respectively.
A stochastic stream of the fractional part is generated by us-
ing conventional B2S unit. The integer stochastic stream of
the real value s is then obtained by adding the integer part,
i.e., bsc with each element of generated stochastic stream as
depicted in Fig. 6. Therefore, an integer stream can be easily
generated by using a single B2S and an adder.

4. EXPERIMENTAL RESULTS
In this section, the simulation results of the proposed stochas-
tic implementations of FIR/IIR filters are provided. More-
over, the proposed stochastic architectures were synthesized
in a 65 nm CMOS technology for a hardware realization.

4.1. Simulation Results

To measure the accuracy of the proposed stochastic FIR filter,
a mixture of several sinusoidal waves with different frequen-
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Fig. 6. The integer stochastic stream generation of the real
value 2.625.

cies and a white noise are used as the inputs of filters. To this
end, high-pass and low-pass filters with two different filter
orders and four different cut-off frequencies are considered.
A stream length of 1024 is used for generation of stochastic
streams and 1000 input samples are used to test the proposed
designs. Table 1 shows the accuracy of the proposed stochas-
tic FIR filter in the form of error-to-signal power ratio with the
aforementioned conditions. The simulation results show that
the proposed architecture functions properly for high-order
filters and the error remains roughly constant as the filter or-
der increases as opposed to the previously proposed stochastic
architectures.

To illustrate the performance of the proposed IIR filter
based on Integral SC, we studied the 6th-order IIR filter pre-
sented in [1] for a fair comparison. The transfer function of
the low-pass filter is given by:

H(z) =
0.0007378(1 + 6z−1 + 15z−2 + 20z−3 + 15z−4 + 6z−5 + 6z−6)

1− 3.183z−1 + 4.622z−2 − 3.769z−3 + 1.791z−4 − 0.4593z−5 + 0.0453z−6
, (10)

and the transfer function of the high-pass filter is given by:

H(z) =
0.0007378(1− 6z−1 + 15z−2 − 20z−3 + 15z−4 − 6z−5 + 6z−6)

1 + 3.183z−1 + 4.622z−2 + 3.769z−3 + 1.791z−4 + 0.4593z−5 + 0.0453z−6
. (11)

Each of the above equations are first decomposed to three
second-order direct-form II structures. The performance re-
sults of the proposed stochastic implementations of the IIR
filters are summarized in Table 2. The simulations are per-
formed under the same condition as the proposed FIR filter.
For a fair comparison, the simulation results of the direct-
form I structure was regenerated in this work. As shown in
Table 2, the proposed architecture results in a roughly 4 orders
of magnitude reduction in error compared to the direct-form I
structure presented in [5]. Note that the lattice structure pre-
sented in [3] showed only 2 orders of magnitude improvement
compared to the direct-form I structure.

4.2. Hardware Implementation Results

The proposed FIR/IIR stochastic filters were synthesized us-
ing Cadence Encounter RTL Compiler in a 65 nm
CMOS technology. For a fair comparison, binary traditional
implementations of FIR/IIR filters were also implemented in
the same framework. The implementation results respectively
show 90% and 79% reductions in area compared to the fixed-
point implementations of FIR and IIR filters, which are sum-
marized in Table 3. The numbers for traditional binary im-
plementations are quantized to 10 bits, and the stream length
of L = 1024 is used for hardware implementation of the pro-
posed stochastic architectures. Note that the stream length
can be reduced to L = 64 while maintaining a reasonably

Table 1. The output error-to-signal power ratio of the pro-
posed stochastic FIR filters

Filter Low-pass Cut-off Frequency

Order 0.2π 0.4π 0.6π 0.8π

45 0.0014 0.0012 2.9 ×10−4 5.3 ×10−4

55 0.0012 0.0014 4.28 ×10−4 5.3 ×10−4

Filter High-pass Cut-off Frequency

Order 0.2π 0.4π 0.6π 0.8π

46 0.0012 0.0011 0.0012 0.0021

56 2.8 ×10−4 8.1 ×10−4 0.0011 0.0018

Table 2. The output error-to-signal power ratio of the pro-
posed stochastic IIR filters

Filter Direct Proposed

Type Form [5]

Low-pass 42.5721 0.0030

High-pass 43.3597 0.0011

Table 3. The hardware implementation of the proposed
stochastic architectures for IIR/FIR filters in a 65 nm CMOS
technology @ 400 MHz for a stream length of L.

Filter Type FIR IIR

Implementation Type ISC Binary ISC Binary

Filter Order 56 56 6 6

Area (µm2) 22,526 218,905 7,620 36,921

Latency (ns) 2.5× L 2.5 2.5× L 2.5

small error-to-signal power ratio. In that case, the worst error-
to-signal power ratios of the proposed design become 0.036
for the FIR filters and 0.078 for the IIR filters.

5. CONCLUSIONS

In this paper, firstly, a novel stochastic implementation of a
FIR filter is proposed. The proposed architecture uses the
APC and AND gate as its main computational units to per-
form the additions and multiplications required for filtering.
It is shown that the error rate of the proposed architecture
remains constant as the filter order increases as opposed to
traditional stochastic hardware implementations. Secondly, a
VLSI architecture for a second-order direct-form II structure
of an IIR filter is proposed using the Integral SC. Therefore,
a high-order IIR filter can be obtained by cascading series
of second-order direct-form II structures. The error-to-signal
power ratio results of the proposed IIR filter showed a roughly
2 orders of magnitude improvement compared to the lattice
structure.
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