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ABSTRACT

In the real world, speech is usually distorted by both reverberation
and background noise. In such conditions, speech intelligibility is
degraded substantially, especially for hearing-impaired (HI) listen-
ers. As a consequence, it is essential to enhance speech in the noisy
and reverberant environment. Recently, deep neural networks have
been introduced to learn a spectral mapping to enhance corrupted
speech, and shown significant improvements in objective metrics
and automatic speech recognition score. However, listening tests
have not yet shown any speech intelligibility benefit. In this paper,
we propose to enhance the noisy and reverberant speech by learn-
ing a mapping to reverberant target speech rather than anechoic tar-
get speech. A preliminary listening test was conducted, and the re-
sults show that the proposed algorithm is able to improve speech
intelligibility of HI listeners in some conditions. Moreover, we de-
velop a masking-based method for denoising and compare it with the
spectral mapping method. Evaluation results show that the masking-
based method outperforms the mapping-based method.

Index Terms— speech intelligibility test, speech denoising,
spectral mapping, ideal ratio mask, deep neural networks

1. INTRODUCTION

In daily environments, room reverberation and background noise
both distort the speech signal. Such distortions severely degrade the
performance of automatic speech recognition (ASR) and speaker
identification (SID), as well as the ability of listeners to under-
stand speech. While normal-hearing (NH) listeners are able to
tolerate such distortions to a large extent, hearing-impaired (HI)
listeners show poor performance [1]. Even though a lot of effort
has been made to combat reverberation and noise, and substantial
performance improvements on the ASR [2, 3, 4] and the SID [5]
tasks have been obtained, no monaural algorithm has been able to
improve speech intelligibility of HI listeners in the noisy and rever-
berant conditions. Therefore, denoising and dereverberation remain
a major challenge.

Our objective is to improve speech intelligibility of HI subjects.
It is well documented that without background noise, both NH and
HI listeners show considerable tolerance to room reverberation. In
other words, with no noise, human speech recognition is impaired
only when the reverberation time (T60) is long. For HI listeners, T60
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needs to be at least 1 s before the intelligibility score drops to be-
low 50% [6, 7, 8]; this is the case even for cochlear implantees [9].
For NH listeners, the recognition rates drop to below 50% with 2 s
or longer T60 [6, 10]. In real-world environments, the reverberation
time is typically less than 1 s; that is to say, removing noise alone
should potentially provide speech intelligibility improvements. Fur-
thermore, not all reverberation is harmful to speech intelligibility.
Indeed early reflections can benefit speech intelligibility [11, 12].

Han et al. [13] proposed a spectral mapping approach to perform
dereverberation, which has been extended to enhance the noisy and
reverberant speech [4]. The idea is to utilize deep neural networks
(DNNs) to learn a mapping function from the magnitude spectrum
of noisy and reverberant speech to that of corresponding noise-free
and anechoic speech. However, informal listening clearly indicates
that the method does not improve speech intelligibility. One possible
reason is the different nature of reverberation and noise. In general,
room reverberation corresponds to a convolution process of a direct
sound with a room impulse response (RIR) [14], while background
noise is usually considered an additive signal to clean speech. Learn-
ing a mapping function to deconvolve and denoise simultaneously
may be too difficult for a standard DNN.

The above observations motivate us to pursue a different map-
ping function to remove noise only. The rationale for just performing
denoising is that even HI listeners can tolerate a significant amount
of reverberation without intelligibility degradation. The results of a
preliminary listening test demonstrate that this new mapping func-
tion can lead to intelligibility benefits for HI listeners. In addition,
we develop a masking-based method to denoise noisy and reverber-
ant speech. Evaluation results show that our masking-based method
outperforms spectral mapping in terms of predicted intelligibility
score.

The paper is organized as follows. The next section will discuss
the relation to previous work. Section 3 and section 4 describe the
proposed algorithm and objective evaluation results. In section 5, the
results of a preliminary listening test are shown. Section 6 presents
our masking-based method and comparisons with the spectral map-
ping method. Concluding remarks are presented in the last section.

2. RELATION TO PRIOR WORK

Despite many speech enhancement algorithms have been proposed
to deal with noisy and reverberant speech [2, 3, 4, 15], they do not ad-
dress hearing impairment. On the other hand, a DNN-based speech
segregation system with demonstrated intelligibility improvements
for HI listeners [16] does not deal with room reverberation. The aim
of our proposed algorithms is to improve the speech intelligibility of
HI listeners in both reverberant and noisy environments. Different
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from [4], we design a new mapping function which utilizes clean
reverberant speech as the desired signal. Furthermore, with the new
target signal, we develop a masking-based method to enhance cor-
rupted speech.

3. ALGORITHM DESCRIPTION

Features of a noisy and reverberant signal are extracted by short time
Fourier transform (STFT). Given a time domain signal s(t) sampled
at 16 kHz, we divide the signal using a 20 ms frame window with a
10 ms window shift. For each time frame, a 320-point fast Fourier
transform (FFT) is applied resulting in 161 frequency bins. Only
magnitude information is considered. Therefore, at time frame m,
we obtain a 161-dimensional feature vector y(m) of noisy and rever-
berant speech. In order to take advantage of temporal information,
we employ a context window to incorporate features of adjacent time
frames. Hence, the feature vector F at time frame m is constructed
as

F (m) = [y(m− c), · · · ,y(m), · · · ,y(m+ c)] (1)

where c is the context window size. Although a bigger window en-
codes more context information, our experiments suggest that per-
formance gain becomes slight when the window size increases be-
yond a certain point. Considering the computational cost, we set
c = 5. Consequently, the feature dimension for the DNN input
is 11 × 161 = 1771. Since the magnitude spectrum has a large
dynamic range, a log operation is applied to compress the values.
Before DNN training, the features are normalized to zero mean and
unit variance.

To learn a mapping function, the log magnitude spectrum of
clean reverberant speech is treated as the desired output of the DNN-
based enhancement system. For the purpose of a bounded training
target, the target log magnitude spectrum is normalized to the range
of [0,1].

The loss function is mean square error (MSE). Since the DNN is
trained to learn a mapping function f from the log magnitude spec-
trum of noisy and reverberant speech to that of corresponding clean
reverberant speech, the loss function is defined as follows,

L(x,F ; Θ) = ‖x− f(F )‖2 (2)

where F denotes the normalized feature vector; x denotes the nor-
malized log magnitude spectrum of clean reverberant speech; Θ de-
notes the parameters of the mapping function f , which is learned
during the training phase.

Fig. 1 shows a diagram of the proposed DNN-based spectral
mapping algorithm. The DNN architecture includes 4 hidden lay-
ers with 1024 units in each layer. This setup is a trade-off between
performance and computational cost. The activation function for the
hidden layers is the rectified linear function (ReLU) [17]. For the
output layer, the sigmoidal activation function is used. For training
the neural network, adaptive gradient descent [18] is utilized as the
optimization method.

The time domain signal is resynthesized by using the phase of
noisy and reverberant speech. Although post-processing on cor-
rupted phase can slightly improve objective speech intelligibility and
quality metrics [4], we do not find speech intelligibility benefits in
informal listening tests. Thus no post-processing is applied in any of
our experiments.
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Fig. 1. DNN-based spectral mapping

4. EVALUATION RESULTS

We evaluate the proposed algorithm on the IEEE corpus [19] spoken
by a female speaker. There are 72 phonetically balanced lists in the
corpus, each with 10 sentences. Sentences from the first 30 lists
are selected to generate training data. Sentences from list 70-72 are
used to generate validation data. The proposed algorithm is tested
on sentences from list 51-60.

Two reverberant rooms are simulated: room 1 with size 10 m×
7 m × 3 m and room 2 with size 5 m × 6 m × 3 m. Room 1
is used to generate RIRs for training and validation sets, and room
2 for testing. Different RIRs are generated with the positions of
receiver and speaker randomly chosen while fixing their distance
to 4 m. Three values of T60 are considered, namely, 0.3 s, 0.6 s
and 0.9 s. For training and validation sets, we generate two RIRs
for each T60; for test set, we generate one RIR corresponding to
one T60. All RIRs are generated by using an RIR generator [20]
which employs the image model [21]. Consequently, there are
300×3(T60s)×2(RIRs) = 1800 reverberant utterances in the training
set, 30×3(T60s)×2(RIRs) = 180 reverberant utterances in the vali-
dation set, and 100×3(T60s)×1(RIR) = 300 reverberant utterances
in the test set.

Babble noise and speech shaped noise (SSN) are used in our
study, with babble noise being nonstationary and SSN stationary.
Both noises last about 4 min. We divide the noise into two parts: the
first 3 min is used for training and validation and the remaining noise
is used for testing. Thus there is no noise overlap between train-
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ing/validation data and test data. The noisy and reverberant speech
is constructed by

y(t) = x(t) + αn(t) (3)

where y(t), x(t) and n(t) denote noisy and reverberant speech, re-
verberant speech, and noise signal, respectively; α is a parameter
used to adjust signal-to-noise ratio (SNR). Note that in SNR calcula-
tion, reverberant speech (x(t)) is treated as signal [22]. To add noise
to reverberant speech, we randomly select a segment from noise sig-
nal and add it to reverberant target at a specified SNR. Noisy and
reverberant speech is mixed at three SNRs, -5 dB, 0 dB and 5 dB.
Finally, we get 1800×3(SNRs)×2(noises) = 10800 utterances for
training, 180×3(SNRs)×2(noises) = 1080 utterances for validation,
and 300×3(SNRs)×2(noises) = 1800 utterances for testing.

STOI PESQ
-5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

unprocessed 0.413 0.563 0.706 1.247 1.651 2.059
STFT→ STFT 0.546 0.665 0.752 1.688 2.077 2.417

Table 1. Average STOI and PESQ scores after enhancement by pro-
posed spectral mapping at each SNR for babble noise.

STOI PESQ
-5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

unprocessed 0.436 0.588 0.730 1.285 1.619 1.986
STFT→ STFT 0.596 0.706 0.776 1.782 2.140 2.436

Table 2. Average STOI and PESQ scores after enhancement by pro-
posed spectral mapping at each SNR for SSN.

Short-time objective intelligibility (STOI) [23] and perceptual
evaluation of speech quality (PESQ) [24] are employed to evaluate
speech intelligibility and quality, respectively. These are standard
objective metrics where the value range for STOI is between 0 and
1, roughly corresponding to recognition rate, and the value range for
PESQ is between -0.5 and 4.5. Since we only remove noise from
noisy and reverberant speech, clean reverberant speech is used as
the reference signal in the evaluation.

Table 1 and Table 2 list the average STOI and PESQ values of
unprocessed and processed signals. In the tables, we denote the spec-
tral mapping algorithm by “STFT→STFT”. At a specified SNR
level, we average the evaluation values across the three values of
T60. By comparing STOI and PESQ values of unprocessed noisy-
reverberant speech with those of enhanced signals, we see a clear
improvement in predicted intelligibility and quality at all three SNRs
and with two noises. Smaller improvements are obtained at higher
SNRs since, under such conditions, speech intelligibility and qual-
ity of unprocessed signals are better, and less room exists for further
improvements.

5. PRELIMINARY LISTENING TEST

Although improvements on STOI indicate potential improvements
on actual speech intelligibility, it is important to validate whether the
proposed approach can improve speech intelligibility of HI listeners
in noisy and reverberant environments. To answer this question, we
conducted a preliminary intelligibility test.

5.1. Test Methodology

To avoid repeated sentences heard by one subject, test stimuli consist
of 32 lists (list 39-70) from the IEEE corpus. Out of the remaining
40 lists, 32 lists (list 1-32) are used to train the DNN, and 2 lists (list
71-72) are used as the validation set and also for a practice session
prior to the listening test.

We generate the stimuli at two T60 values of 0.6 s and 0.9 s, and
two SNR levels (either 0 dB and 5 dB, or 5 dB and 10 dB). These
T60 and SNR values are chosen so that in the more difficult SNR
case, the intelligibility score of unprocessed signal is below 50% for
HI listeners, and in the less difficult case, the score is higher than
50%. In this way, we can evaluate the algorithm’s ability to improve
speech intelligibility at different levels of difficulty. So there are
2(T60s)×2(SNRs)×2(noises)×2(processed, unprocessed) = 16 con-
ditions to test. It should be pointed out that shorter noises are used to
prepare the data, with babble noise being about 5 s and SSN about 6
s. In addition, random segments are taken from the whole duration
of each noise in order to generate training, validation, and test sets.
These settings are different from those described in section 4, but are
consistent with the evaluation methodology in [4].

Each sentence in the IEEE corpus has 5 keywords. Scoring is
based on the number of keywords correctly identified by the subject.
The subjects are allowed to guess and report a subset of the words in
a sentence, and repeat the words verbally to the experimenter. The 16
conditions are divided into two sessions: session I with babble noise
and session II with SSN. The two sessions are alternated between
consecutive subjects. For each condition, we present 20 sentences,
i.e., 2 lists of the IEEE corpus. Before data collection, a practice ses-
sion including 20 sentences is administered to familiarize a listener
with the test flow and the kind of signals to listen to. The second
session will also be proceeded with the practice session if it is not
conducted right after the first one.

Noise T60 SNR HI-1 HI-2 HI-3 HI-4 Ave.
(s) (dB) ∆ in % ∆ in % ∆ in % ∆ in %

Babble

0.6
0 +22.0 (4.0) +22.0
5 +28.0 (29.0) -33.0 (88.0) +15.0 (64.0) +3.3
10 +12.0 (80.0) +19.0 (57.0) +15.5

0.9
0 +9.0 (0.0) +18.0 (3.0) +13.5
5 +18.0 (15.0) +3.0 (26.0) +4.0 (88.0) -10.0 (84.0) +3.8
10 +21.0 (38.0) +14.0 (37.0) +17.5

SSN
0.6 0 +6.0 (73.0) -19.0 (78.0) -1.0 (66.0) -4.7

5 -18.0 (80.0) -1.0 (52.0) +23.0 (29.0) +1.3

0.9 0 +14.0 (32.0) +22.0 (10.0) +17.0 (74.0) -11.0 (79.0) +10.5
5 -1.0 (60.0) +3.0 (24.0) -1.0 (44.0) -1.0 (20.0) +0.0

Table 3. Speech intelligibility results of 4 HI listeners. The scores
of unprocessed conditions are listed inside the parentheses.

5.2. Results

Four HI listeners with symmetric hearing loss were recruited at the
Starkey Headquarters in Eden Prairie MN to participate in the listen-
ing test. HI-1 and HI-3 have mild hearing loss and the other two have
moderate hearing loss. The changes of percent intelligibility scores
are listed in Table 3. During the listening test, for HI-1 and HI-2,
session I was tested using 0 dB and 5 dB SNRs. After this test, the
SNRs were increased by 5 dB. Part of HI-2’s results was discarded
because his hearing aids were not taken off during the test. These
are why some entries of Table 3 are left blank.

There are conditions where the speech intelligibility of pro-
cessed signals is lower than that of unprocessed ones. However,
more conditions result in improvement (i.e., positive numbers in
Table 3). By taking average across all 4 HI listeners, in almost all

6527



conditions we obtain some speech intelligibility improvements. The
improvement is consistent for the babble noise at the SNR of 10 dB
for both T60 values. Although the listening test is pilot in nature,
the results show the promise of the proposed spectral mapping algo-
rithm for improving the speech intelligibility of HI listeners in noisy
and reverberant environments.

It is worth noting that the intelligibility benefits for HI listeners
come from a new training target of the DNN mapping function, i.e.,
clean reverberant speech. With the mapping function in [4], we were
unable to obtain any speech intelligibility improvement.

6. MASKING-BASED ALGORITHM

A recent study [25] on training targets for supervised speech separa-
tion shows that time-frequency (T-F) masking performs better than
spectral mapping. Therefore, we propose a masking-based algorithm
to enhance the noisy and reverberant speech and compare with the
spectral mapping method described in section 3.

We define the ideal ratio mask (IRM) as follows [25],

IRM(t, f) =

√
S2(t, f)

S2(t, f) +N2(t, f)
(4)

where S2(t, f) and N2(t, f) denote the energy of reverberant
speech and additive noise in each T-F unit, respectively. It is worth
noting that clean reverberant speech is again used as the target signal
in our definition.

In our masking-based algorithm, instead of predicting the log
magnitude spectrum of clean reverberant speech, the IRM is used as
the training target. In the test phase, the estimated IRM is applied to
the magnitude spectrogram of noisy and reverberant speech, and the
enhanced signal is resynthesized by using the phase of unprocessed
signal.

Although DNNs have a capacity to learn abstract features from
raw inputs, well-designed features may still be helpful. Thus, in
addition to using log magnitude spectrum as the input feature, we
employ as the input a set of complementary features [25, 26], i.e.,
a combination of amplitude modulation spectrogram (AMS, 15 di-
mensions), relative spectral transform and perceptual linear predic-
tion (RASTA-PLP, 13 dimensions), mel-frequency cepstral coeffi-
cients (MFCC, 31 dimensions), Gammatone filterbank power spec-
tra (GF, 64 dimensions), and their delta (123 dimensions) and double
delta (123 dimensions) components. Therefore, the feature dimen-
sion for each time frame is 369. Before training the DNN, the fea-
tures are normalized to zero mean and unit variance.

Since spectral mapping is performed in the spectrogram domain,
the IRM is computed in the spectrogram domain too. To simplify the
descriptions, we use following notations,

• STFT → IRM: estimate the IRM by using the log spectral
magnitude of noisy and reverberant speech as the input fea-
ture

• CF→ IRM: estimate the IRM by using the complementary
feature of noisy and reverberant speech as the input feature

We conduct the experiments on the same dataset described in
section 4. The average STOI and PESQ values are listed in Table
4 and Table 5 for babble noise and SSN, respectively. Comparing
with the results in Tables 1 and 2, our masking-based algorithm im-
proves over the mapping-based algorithm in both STOI and PESQ.
Since we focus on enhancing speech intelligibility, the STOI im-
provements for the babble noise conditions are separately shown in
Fig. 2, highlighting the significant improvements obtained by the

masking-based method. These results are in agreement with the de-
noising results in [25]. The main performance gain results from the
adoption of the masking training target. The use of the complemen-
tary feature set provides some additional improvements compared
with the log magnitude feature.

STOI PESQ
-5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

unprocessed 0.413 0.563 0.706 1.247 1.651 2.059
STFT→ IRM 0.563 0.699 0.805 1.748 2.162 2.568

CF→ IRM 0.569 0.711 0.813 1.791 2.208 2.601

Table 4. Average STOI and PESQ scores for STFT→IRM and
CF→IRM at each SNR for babble noise.

STOI PESQ
-5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

unprocessed 0.436 0.588 0.730 1.285 1.619 1.986
STFT→ IRM 0.613 0.739 0.828 1.854 2.225 2.589

CF→ IRM 0.634 0.752 0.834 1.922 2.282 2.619

Table 5. Average STOI and PESQ scores for STFT→IRM and
CF→IRM at each SNR for SSN.

-5dB 0dB 5dB
0

0.05

0.1

0.15

0.2

 

 

 STFT  STFT

 STFT  IRM

 CF  IRM

Babble noise

S
T

O
I 

Im
p
ro

v
em

en
ts

0dB 5dB-5dB

Fig. 2. STOI improvements at each SNR after removing babble
noise

With better STOI and PESQ scores and informal listening im-
pressions of the masking-based method, we predict further speech
intelligibility improvements over those in Table 3 for HI listeners in
noisy and reverberant environments.

7. CONCLUSION

Our objective was to improve the speech intelligibility of HI listeners
in the noisy and reverberant environment. We have proposed to use
spectral mapping to enhance the noisy and reverberant speech by re-
moving noise only. A preliminary listening test has been conducted
and the results have demonstrated the effectiveness of the proposed
method. We have also developed a masking-based method by using
reverberant target speech as the desired signal. Systematic evalua-
tion using objective metrics indicates further improvements on both
speech intelligibility and quality with the masking-based method. In
future work, more formal intelligibility listening tests will be con-
ducted to validate if the masking-based denoising approach can pro-
vide HI listeners with additional speech intelligibility improvement
in noisy and reverberant environments.
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