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ABSTRACT 

 

Traditionally, algorithms that attempt to significantly 

improve speech intelligibility in noise for cochlear implant 

(CI) users have met with limited success, particularly in the 

presence of a fluctuating masker. In the present study, a 

speech enhancement algorithm integrating an artificial 

neural network (NN) into CI coding strategies is proposed. 

The algorithm decomposes the noisy input signal into time-

frequency units, extracts a set of auditory-inspired features 

and feeds them to the NN to produce an estimation of which 

CI channels contain more perceptually important 

information (higher signal-to-noise ratio, SNR). This 

estimate is then used accordingly to retain a subset of 

channels for electrical stimulation, as in traditional n-of-m 

coding strategies. The proposed algorithm was tested with 

10 normal-hearing participants listening to CI noise-vocoder 

simulations against a conventional Wiener filter based 

enhancement algorithm. Significant improvements in speech 

intelligibility in stationary and fluctuating noise were found 

over both unprocessed and Wiener filter processed 

conditions. 

 

Index Terms— Cochlear implants, noise reduction, 

speech enhancement, neural networks, machine learning 

 
1. INTRODUCTION 

 
State-of-the-art cochlear implants (CI) allow for near-to-

normal speech understanding in quiet acoustic conditions, 

however environmental noises represent one of the main 

challenges for CI users’ speech understanding in everyday 

life [1]. Several speech enhancement algorithms for cochlear 

implants have been proposed to alleviate this problem. 

Single-channel speech enhancement techniques have 

been successfully applied to cochlear implant sound coding 

and demonstrated to improve speech intelligibility in certain 

acoustical environments. These algorithms rely on statistical 

assumptions about the background noise (e.g. stationarity)  

for the estimation of the SNR in order to modify the spectral 

content of the signal. Maximum benefits of around 2.5 dB in 

speech reception threshold (SRT) were demonstrated in 

stationary noise, but the benefit is much reduced when the 

interfering noise is non-stationary, as in the case of 

competing talkers [2,3]. 

More recent approaches, such as supervised speech 

separation techniques, have been reported to improve speech 

intelligibility also in fluctuating background noise [4,5]. 

These algorithms make use of a binary classifier trained on 

the task of estimating the ideal binary mask (IBM). The 

concept of the IBM is based on retaining speech-dominant 

time-frequency (T-F) units while discarding masker-

dominant T-F units with lower SNR by the application of an 

SNR threshold, the local criterion (LC) [6,7]. A 

demonstration of intelligibility improvement for CI users by 

a monaural algorithm has been provided by Hu et al. [4]. 

The authors used a Gaussian mixture model-based classifier 

to decide whether each CI channel was dominated by speech 

or by noise. Only speech-dominated channels were retained 

for electrical stimulation, resulting in large improvements in 

speech intelligibility in babble, train and exhibition hall 

noise. More recently, deep neural networks have been 

applied to the task of the IBM estimation and have shown 

significant improvements in speech intelligibility for 

normal-hearing (NH) and hearing-impaired (HI) listeners 

[5]. 

These studies represent a promising direction for 

improving speech enhancement algorithms, but are yet 

limited to a specific set of acoustic scenarios used during the 

training stage of the algorithm and depend on the choice of a 

LC for the IBM estimation. In contrast, the ideal Wiener 

filter (IWF) (also known as ideal ratio mask, IRM) applies a 

gradual weight to each T-F unit according to its local SNR 

and does not depend on the choice of a LC [8,9]. Listening 

tests conducted with NH listeners have shown that the IWF 

is less sensitive to estimation errors, leads to higher 

intelligibility scores in low SNR conditions, and is preferred 

in terms of perceived quality compared with the IBM [10]. 
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The present study aims to investigate the potential 

improvements in speech intelligibility of a NN-based speech 

enhancement algorithm applied to CI coding strategies, 

hereafter referred as NNSE. The algorithm uses the IWF 

target for the training of the NN. In contrast to previous 

studies, we evaluated the performance on unseen noise 

realizations while reducing the complexity of the algorithm. 

 

2. ALGORITHM DESCRIPTION 

 

The integration of NNSE into a typical CI signal path is 

shown in Figure 1. We used the Advanced Combination 

Encoder (ACE™), an n-of-m speech coding strategy, where 

the input signal is decomposed into 𝑚 = 22 frequency 

channels from which the envelope information is extracted. 

Maxima selection then retains only a subset of 𝑛 channels 

with the largest amplitudes (maxima) for electrical 

stimulation in each stimulation cycle. In this study, we 

chose a typical value of eight maxima. 

The proposed algorithm consists of two main 

components: feature extraction and gain estimation. The 

integration of the NNSE into CI processing does not require 

a reconstruction stage, since the energy in frequency 

channels is directly used to determine the electrode output. 

Noisy input signals were first downsampled to 16 kHz and 

divided into 20-ms frames with 10-ms overlap, from which 

a set of features was extracted and passed to an artificial 

neural network trained on the task of estimating the IWF 

gain over 63 frequency channels of a gammatone filterbank 

with centre frequencies ranging from 50 to 8000 Hz. The 

IWF gain was calculated as: 
 

𝐺𝑘,𝑛 =
𝜉𝑘,𝑛

1+𝜉𝑘,𝑛
,          (1) 

 

where 𝜉𝑘,𝑛 is the (true) SNR of the 𝑘-th frequency channel 

and 𝑛-th frame. The estimated gains were then remapped to 

the 22 CI channels, smoothed (exponential smoothing with a 

time constant 𝜏 = 12 ms) and applied to the noisy envelopes 

before ACE maxima selection. This has the main effect of 

attenuating masker-dominated channels, ultimately affecting 

maxima selection so that target-dominated channels are 

more likely to be selected for electrical stimulation. 

2.1. Feature extraction 

In contrast to previous studies that employed sub-band 

feature sets [4,5], we extracted features from the broadband 

signal. The feature set was extracted from each 20-ms long 

frame and consisted of two widely used speech recognition 

features - the Mel-Frequency Cepstral Coefficients (MFCC) 

and the Relative Spectral Transform Perceptual Linear 

Prediction (RASTA-PLP) feature - concatenated with the 

Gammatone log-energies (GTE) features. Our experimental 

results indicated that this combination led to higher 

estimation accuracy than the individual features alone. 

To compute the MFCC and RASTA-PLP features, we 

applied a Hanning window to the input frame to then derive 

the power spectrum using short-time Fourier transform. For 

MFCC, the spectrum was converted into Mel scale, 

followed by log-compression and discrete cosine transform 

to obtain 31 cepstral coefficients. For RASTA-PLP, the 

power spectrum was instead warped to the Bark scale, log 

compressed, filtered by the RASTA filter (which 

emphasizes the modulation frequencies relevant to human 

speech), and expanded again by an exponential function. 

Finally, a 12-th order linear prediction model analysis was 

performed on this filtered spectrum to derive 13 RASTA-

PLP features. To extract GTE features, we passed each input 

signal frame through the same 63-channel gammatone 

filterbank used to compute the IWF target gains. The energy 

of each sub-band signal was log-compressed to obtain 63 

GTE features. Since speech typically exhibits highly 

structured spectro-temporal patterns, we added contextual 

temporal-information in the form of the 107 features of the 

previous frame, for a total of 214 features for each time-

frame. 

2.2. Artificial neural network training 

In this study, we used a feed-forward NN with two hidden 

layers of 100 and 50 units. We found that the use of two 

hidden layers increased the estimation accuracy, while 

additional layers did not provide further benefit. The 

number of units in the input and output layers is given by 

the dimensionality of the input feature set and the output 

gains (214 and 63-D, respectively). Both hidden layers used 

a saturating linear transfer function (linear between 0 and 1, 

but saturating at these values outside that range), whereas 

the output layer used a linear transfer function. 

We trained the network to estimate the IWF gain mask 

using the resilient back-propagation algorithm, with the 

mean squared error performance function and weight decay 

regularization to avoid overfitting. The network was trained 

with a total of 80 sentences (eight lists) from the IEEE 

database (male talker) [11]. The interfering maskers 

included speech shaped noise (SSN) with the same long-

term spectrum as the target speech, and BABBLE noise (4 

male and 4 female talkers from the TIMIT corpus). Each 

noise recording was 26-seconds long. We used 18-seconds 

long segments of each masker for the training, while the 

remaining 8 seconds were left for testing. The sentences 

were mixed with random parts of both noises at 8 SNR 

 

Figure 1 - System block diagram of the proposed speech 

enhancement strategy (NNSE) integrated in ACE. 
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levels, in 2 dB increments from -6 to 8 dB. The training of 

one NN took around 15 minutes on a newer generation 

personal computer. A different network was trained for each 

masker tested (but not for each SNR condition).  

 

3. EVALUATION 

3.1. Test material 

The target speech material used for the testing included the 

remaining 64 lists from the IEEE corpus (male talker) after 

the neural network training, while the maskers consisted of 

random parts of 8-second long segments of the noise 

recordings (SSN and BABBLE) reserved for testing (see 

Section 2.2). 

The noisy mixtures were processed off-line with the 

Nucleus MATLAB Toolbox ACE implementation in three 

conditions: unprocessed noisy speech (UN), signal enhanced 

with the proposed algorithm (NNSE), and enhanced with a 

Wiener-filter type algorithm (WFSE). In the WFSE 

condition, noisy mixtures were pre-processed with a Wiener 

filter based on a priori SNR estimation [12] using the 

unbiased MMSE-based noise power estimator [13] prior to 

CI processing. This condition was added in order to 

compare NNSE with a state of the art speech enhancement 

algorithm. A broadband correction gain was applied after 

the enhancement algorithms to restore the level of the 

speech component to its original level. Finally, after the 

ACE maxima selection, processed envelopes were passed 

through a noise-band vocoder (with the same cutoff 

frequencies as the ACE filterbank) to simulate CI processing 

and obtain the test stimuli used for the objective evaluation 

and the listening experiment. 

3.2. Objective evaluation: procedure and results 

To compare the accuracy of the neural network estimation 

with previous studies, we converted the estimated and IWF 

gain masks into binary masks using an LC set 6 dB lower 

than the overall mixture SNR. We then calculated the 

average correctly classified T-F units (HIT) and false alarm 

(FA, equivalent to type-I error) percentage rates [4].  

Additionally, we computed two speech intelligibility 

measures of the processed vocoded speech (using clean 

vocoded speech as reference): the short-time objective 

intelligibility measure (STOI) [14], which has been 

developed for T-F weighted noisy speech, and the 

normalized covariance metric (NCM), which is closely 

related to CI processing and has been successfully applied to 

vocoded signals previously [15,16]. Accuracy rates and 

intelligibility scores were computed over 100 sentences and 

are shown in Table 1 and Table 2, respectively.  

The proposed algorithm reached high performance in 

terms of HIT-FA rate, which has been shown to correlate 

with speech intelligibility. Intelligibility measures predicted 

higher scores for the NNSE compared with unprocessed 

speech (UN) and - to a lower extent - over the WFSE. 

3.3. Listening experiment: procedure and results 

Ten normal-hearing native English speakers (six males and 

four females, with an average age of 29 years) participated 

in this study. The test material is described in Section 3.1. 

Testing began with a short training to acclimatize the 

subject to the vocoded stimuli, consisting of one list of clean 

speech followed by one list at 10 dB SNR for each masker 

type. The listening test involved a sentence recognition task 

(five keywords per sentence) of vocoded speech in four 

noise conditions: in SSN at 0 and 5 dB SNR, and in 

BABBLE noise at 5 and 10 dB SNR. The SNR levels were 

chosen to avoid floor and ceiling effects. Subjects were 

presented with two lists for each of the 12 conditions [3 

processing strategies (UN, WFSE and NNSE) × 2 SNRs × 2 

maskers]. The presentation order of processing strategy and 

SNR level was randomised for each subject. Stimuli were 

presented diotically over closed circumaural headphones 

(Sennheiser HD380 pro) at 65 dB SPL.  

Percentage correct word scores are shown in Figure 2. 

For SSN, analysis of variance with repeated measures 

indicated significant effects of both SNR level [F(1,9) = 

686.2, p < 0.001] and processing condition [F(2,18) = 47.3, 

p < 0.001], and a significant interaction between the two 

[F(2,18) = 5.9, p = 0.011]. For BABBLE, significant effects 

of both SNR level [F(1,9) = 265.3, p < 0.001] and 

processing condition [F(2,18) = 70.2, p < 0.001] were 

found.  

Bonferroni corrected post hoc tests were run to assess 

the statistical significance between conditions. Results show 

significant improvements of the proposed NNSE algorithm 

over both UN and WFSE in all noise types and SNR levels 

(p-values are shown in Figure 2). 

Table 1 – HIT-FA and FA rates (expressed in percent) obtained 

with NNSE for the four noise conditions. 

           SSN       BABBLE 

 0 dB 5 dB 5 dB 10 dB 

HIT-FA 74.40 76.18 69.65 67.38 

FA   7.75   3.17   8.75   3.20 

 
Table 2 - STOI and NCM scores for the four noise conditions and 

the three processing conditions. 

           SSN       BABBLE 

 0 dB 5 dB 5 dB 10 dB 

 STOI 

UN 0.54 0.63 0.58 0.65 

WFSE 0.60 0.69 0.59 0.67 

NNSE 0.64 0.70 0.64 0.70 

 NCM 

UN 0.50 0.63 0.42 0.57 

WFSE 0.60 0.69 0.44 0.59 

NNSE 0.64 0.69 0.58 0.66 
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4. DISCUSSION AND CONCLUSION 

 

Significant improvements in intelligibility were 

observed with the proposed neural-network based speech 

enhancement strategy (NNSE). These improvements were 

consistent in all the conditions tested, both compared with 

unprocessed noisy (UN) and with a conventional Wiener 

filter based speech enhancement algorithm (WFSE). The 

improvements were generally more noticeable in the lower 

SNR level of each masker. For instance, the improvement in 

mean scores for NNSE reached 27% in SSN and 18% in 

BABBLE noise over UN (𝑝 < 0.001), and 11% in SSN 

(𝑝 < 0.01) and 18% in BABBLE noise (𝑝 < 0.001) over 

the WFSE. Improvements were predicted by the objective 

intelligibility scores, even though both STOI and NCM 

underestimated the performance increase and did not 

correctly predict higher scores in SSN at 5 dB SNR 

compared with the WFSE.  

As we used vocoded stimuli with NH listeners, it does 

not allow for direct comparison of speech intelligibility 

improvement with previous speech separation studies. The 

HIT-FA rate is a popular measure used in such studies and it 

has been found to correlate highly with intelligibility scores 

obtained from NH listeners [17]. The proposed algorithm 

produced high HIT-FA rates, while maintaining low FA 

rates, which according to Kim et al. are necessary to obtain 

high levels of speech intelligibility [17]. In the same paper, 

the authors also showed that a conventional Wiener filter 

algorithm reaches much lower HIT-FA rates. This was most 

likely the reason behind the better performance of NNSE 

compared with the tested WFSE. 

The NNSE algorithm provided HIT-FA rates close to 

those reported in recent speech separation studies [4,5], 

although a minor decrease in performance was expected 

given the more challenging conditions in which NNSE was 

tested. For example, Hu et al. obtained HIT-FA rates about 

5 and 7% higher compared with NNSE, in BABBLE noise 

at 5 and 10 dB SNR, respectively. Although previous 

studies proved that supervised speech separation algorithms 

are promising strategies for speech enhancement, their 

implementation poses a major challenge in real-word 

applications. This is due to several reasons. Firstly, previous 

studies used the same noise realization for both classifier 

training and testing [4,5], a situation that is unlikely to occur 

in practice. May et al. have shown that the use of unseen 

noise realizations leads to a substantial decrease in HIT-FA 

rates with a Gaussian Mixture Model based system [18], 

such as the one employed by Hu et al. [4]. In the present 

study, the proposed algorithm was tested with unseen 

realisations. Even in these more difficult conditions, we 

found significant speech intelligibility improvements for 

both tested maskers and SNR levels. The generalization of 

the proposed algorithm to mismatched noises and speakers 

between the training and testing stage still needs to be 

investigated. This question could be addressed in several 

ways, for instance by enlarging the training dataset [19] or 

by the integration of a noise-classification system (such as 

[20,21]) into the proposed algorithm. Secondly, the 

computational power required by these algorithms scales 

with their complexity, reflected by the feature extraction 

stage and by the employed classifier. Previous studies used 

sub-band based feature sets and classification systems, while 

we opted for a smaller architecture. NNSE uses one set of 

features extracted from the broadband signal and one neural 

network (for each masker type), resulting in reduced 

algorithm complexity and lower risk of over-fitting the 

training dataset. Finally, we used the IWF as the estimation 

target of the network, as opposed to the IBM. For 

intelligibility to be maintained with the IBM, the optimal LC 

should change according to the overall mixture SNR (as in 

[5]). Compared with the IBM, the IWF does not depend on 

the setting of an LC, it is more robust to estimation errors 

and it is preferred in terms of perceived quality [9,10,22]. 

Thus, the IWF was expected to present a more reliable 

training target for speech enhancement purposes. 

To summarise, the results obtained in this study with 

the proposed algorithm indicate significant improvements in 

speech intelligibility in noise for NH listeners using CI 

vocoder simulations. This motivates the investigation of the 

potential benefit of the proposed NNSE strategy with CI 

users in future studies. 
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Figure 2 - Mean speech intelligibility scores of 10 NH subjects in 

noisy speech (UN), Wiener-filter-based speech enhancement 

(WFSE), and the proposed algorithm (NNSE) in SSN and 

BABBLE noise. Error bars represent the standard error of the 

mean; (**)𝑝 ≤ 0.01, (***)𝑝 ≤ 0.001. 
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