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ABSTRACT
A binaural speech enhancement algorithm that combines su-
perdirective beamforming with time-frequency (TF) masking
is proposed. Supervised machine learning is used to design
a speech/noise classifier that estimates the ideal binary mask
(IBM), which is further softened to reduce musical noise. The
method is energy-efficient in two ways: the computational
complexity is limited and the wireless data transmission opti-
mized. The experimental work demonstrates the ability of the
method to increase the intelligibility of speech corrupted by
different types of noise in low SNR scenarios.

Index Terms— Speech enhancement, Binaural hearing
aids, Machine learning, Time-frequency masking.

1. INTRODUCTION

Binaural hearing aids improve the ability to localize and
understand speech in noise, but with the ensuing increase
in power consumption due to wireless data transmission.
Roughly speaking, the current technology demands as much
power to communicate both hearing aids as that required for
the signal processing on a monaural device [1]. Binaural sys-
tems work with dual-channel input-output signals, although
more than one microphone could be placed in each device. In
the last years, binaural beamforming has been proposed for
speech enhancement in binaural systems [2, 3, 4], but they
only are able to preserve the spatial cues of the target source,
which may cause some hearing discomfort.

Most works focused on binaural beamforming assume
that the signals received at the right and left devices are
available at both sides, which involves a high bandwidth
communication. In practice, the signals are quantized be-
fore being transmitted, and the power consumption directly
depends on the amount of exchanged information. This fact
opens a new line of research: how to reduce the transmission
bit rate without decreasing the performance of the enhance-
ment system. Some of the first works in this direction are
[5, 6, 7]. Unfortunately, the performance of these algorithms
is notably affected when the bit rate decreases (e.g. lower
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than 16 kbps). Additionally, there is a problem associated to
the use of binaural beamforming in hearing aids: the output
of the beamformer (BF) is obtained by combining a weighted
version of the input channels from both devices. If one or
several input signals have been quantized and transmitted to
the other device, the beamforming output is directly affected
by quantization noise.

Recently, the work in [8] has proposed a novel schema
for speech enhancement in binaural hearing aids. The algo-
rithm is energy-efficient in two ways: the computational cost
is limited and the data transmission optimized. Speech en-
hancement is obtained by (TF) masking. The ideal binary
mask (IBM) [9] is estimated with a speech/noise linear clas-
sifier designed using supervised machine learning. Inspired
in [8], the present work considers multiple input channels in
each device. The new schema combines a fixed superdirec-
tive BF with TF masking. The fixed BF is able to reduce a
high level of omnidirectional noise but it fails when reject-
ing directional noise [10]. The directional noise that remains
at the output of the BF is removed by TF masking. A least
squares linear discriminant analysis (LS-LDA) is designed to
estimate the IBM, which is subsequently softened to reduce
musical noise. The output speech intelligibility is evaluated
with different types of noise.

2. PROPOSED ALGORITHM FOR AN EFFICIENT
BINAURAL SPEECH ENHANCEMENT

Let us consider two wireless-connected hearing aids, each de-
vice containing N input channels. The signals impinging on
the n-th microphone of the left (L) and right (R) devices are

xL/Rn(t) = sL/Rn(t) +
∑J

j=1 n
d
L/Rnj(t) + no

L/Rn(t)
(1)

where sL/Rn(t) are the contributions of the desired speech
source to the L/R n-th microphone,

∑J
j=1 n

d
L/Rnj(t) are the

addition of J directional noise sources, and no
L/Rn(t) are dif-

fuse noise. The goal of the speech enhancement system is
to produce an intelligible estimation of the original speech
source, sL/R(t), from the corrupted input signals, xL/Rn(t).
In addition, we assume that the target speaker is localized in
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Fig. 1: Binaural speech enhancement system overview.

the straight ahead direction since, in a normal situation, the
person is looking at the desired speaker.

Fig. 1 shows an overview of the binaural speech enhance-
ment system proposed in this paper. The desired signal is
enhanced in two steps: beamformation of the multichannel
input signals in each device, and TF masking of the binau-
ral steered signals. The second step requires the exchange of
data between devices, and this wireless transmission is opti-
mized to minimize power consumption and maximize speech
enhancement at the same time.

2.1. Robust superdirective beamforming

As a first step to enhance the desired speech signal, each de-
vice includes a fixed superdirective BF steered to the straight-
ahead direction (target source). A fixed superdirective beam-
forming is a computationally affordable solution to remove
omnidirectional noise in hearing aids, since the filter coeffi-
cients can be pre-calculated and stored in the memory of the
device.

The DFT of each time frame of the input signals is cal-
culated by the analysis filterbank, obtaining xL/R(k, l) =
[XL/R1(k, l), · · · , XL/RN (k, l)]T , where k represents fre-
quency, k = 1, · · · ,K, and l the time frame, l = 1, · · · , L.
The steered signals are XS

L/R(k, l) = w(k)HxL/R(k, l),
where w(k) = [W1(k), · · · ,WN (k)]T is the frequency-
domain weight vector, which is the same in both devices due
to symmetry. In the proposed solution, a robust superdirective
BF based on the minimum variance distortionless response
(MVDR) filter [11] is implemented. The amplification of
incoherent noise is avoided by establishing a lower limit on
the white noise gain, as proposed in [12].

2.2. TF masking based on supervised machine learning

The second step is to calculate a TF mask to isolate the de-
sired source from the directional and omnidirectional noise
remaining at the output of the BF. A computationally afford-
able supervised machine learning algorithm is designed to es-
timate the IBM from the information contained in the left
and right steered signals, XS

L/R(k, l), information that must
be previously exchanged between devices. Particularly, the
amplitudes (in dB) of the TF signals (AL/R(k, l)) and the

phases (ΦL/R(k, l)) are quantized and transmitted through
the wireless link. Each device uses the information received
from the other device and its own information to estimate the
TF mask (M(k, l)). It is important to highlight that, in or-
der to preserve the binaural cues, the TF mask applied in
both devices must be the same. The output enhanced sig-
nals are obtained by applying the TF mask to the steered sig-
nals: ŜL/R(k, l) = M(k, l) ·XS

L/R(k, l). The synthesis filter-
banks convert the enhanced TF signals into the time-domain
(ŝL/R(t)).

According to the low computational resources available
in hearing aids, the estimation of the IBM should be simple.
The proposed method is based on a LS-LDA [13] designed to
classify a TF point as speech or noise. A different classifier
is designed for each frequency band k. Let us formulate the
LS-LDA problem. The pattern matrix Q(k) of dimensions
((P+1)xL) contains the P input features of a set of L patterns
(time frames) and a row of ones for the bias. The output of a
LDA is obtained as a linear combination of the input features,
y(k) = v(k)TQ(k), where y(k) = [y(k, 1), . . . , y(k, L)]

T

is a (Lx1) column-vector containing the output of the LDA
and v(k) = [v(k, 1), . . . , v(k, P + 1)]T contains the bias and
the weights applied to each of the P input features. For each
of the patterns, the TF binary mask is generated according to

M(k, l) :=

{
1, y(k, l) > y0
0, otherwise , (2)

where y0 is a threshold value set to y0 = 0.5. In the case
of least squares, the weights are adjusted to minimize the
MSE of the classifier, MSE(k) = 1

L ‖t(k)− y(k)‖2, where
t(k) = [t(k, 1), · · · , t(k, L)]

T contains the target values that,
in our problem, correspond with the IBM: ‘1’ for speech and
‘0’ for noise. The target IBM is calculated according to

t(k, l) :=

{
1, PS(k, l) > PN (k, l)
0, otherwise, (3)

where PS(k, l) = |SS
L(k, l)|2 + |SS

R(k, l)|2 and
PN = |

∑J
j=1 N

dS
Lj (k, l)+NoS

L (k, l)|2+ |
∑J

j=1 N
dS
Rj (k, l)+

NoS
R (k, l)|2, and ()S means steered signal (i.e. BF output).

To adjust the weights of the LS-LDA, the next optimization
problem should be solved:

v̂(k) = min
v(k)
{
∥∥t(k)− v(k)TQ(k)||

}
. (4)
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Providing that the columns of matrix Q(k) are linearly inde-
pendent, the minimization problem has a unique solution, and
the weights are given by v̂(k) = t(k)Q(k)T

(
Q(k)Q(k)T

)−1
.

Finally, the binary mask is estimated with (2) and softened to
reduce musical noise. The solution adopted in this work is
very simple but effective: values of ‘1’ are left unmodified,
and values of ‘0’ are replaced by an attenuation factor of 15
dB (different values have been tested).

The study carried out in [8] found that the most suitable
set of features for the classification problem at hand, consid-
ering a tradeoff between the MSE of the classifier and com-
putational cost, is [AL, abs(AL −AR), abs(ΦL −ΦR)]. The
study was performed with a system implemented asymmetri-
cally (the mask was entirely calculated in one device). Hence,
in the proposed symmetric implementation, the input features
for the left device are [AL, abs(AL−AR), abs(ΦL−ΦR)] and
for the right device are [AR, abs(AL−AR), abs(ΦL−ΦR)].
Additionally, it was found that the information provided by
the features calculated in neighbor time-frequency points is
very valuable to the classifier. The use of 3 neighbor frequen-
cies taken in each direction (upper frequencies and lower fre-
quencies) and the use of 2 previous time frames represented a
good tradeoff between signal enhancement and computational
cost. According to this, the total number of features used by
the classifier to classify each TF point is P = 27.

2.3. Transmission schema to optimize the power con-
sumption

In order to limit the number of bits transmitted through the
wireless link (and the power consumption), we propose to
transmit a low bit rate version of AL/R(k, l) and ΦL/R(k, l),
where the number of bits used to code the amplitude and
phase values may differ and they also may differ in each fre-
quency band. Henceforth, the quantized values are denoted
as ABAk

L/R(k, l) and ΦBPk

L/R(k, l), where BAk is the number of
bits used to code the amplitudes of the k-th band, and BPk

the number of bits used to code the phases of the k-th band.
Bk = BAk+BPk represents the total number of bits transmit-
ted per frequency band. If the total number of bits transmit-
ted through the wireless channel is limited (i.e. the bit rate),
they can be distributed among the different values of BAk and
BPk, and this bit distribution can be optimized to maximize
the output speech enhancement. According to this, the next
optimization problem is formulated

min
BAk,BPk

MSE, s.t.:
K∑

k=1

Bk ≤ BLIMIT , (5)

where MSE = 1/K
∑K

k=1 MSE(k), and BLIMIT the
maximum number of transmitted bits. The values of BAk

and BPk are limited between 0 and 8. Allowing to assign
a value of 0 bits avoid the transmission of unnecessary in-
formation. Finding a closed solution for the optimization

problem in (5) is quite complex, and its solution is approx-
imated by a tailored evolutionary algorithm. The algorithm
searches the best allocation of bits among frequency bands in
order to minimize the average MSE (fitness function). Each
candidate solution is a vector containing the number of bits
(between 0 and 8) assigned to BAk and BPk. The details of
the optimization algorithm can be found in [8].

The transmission schema is further optimized being im-
plemented symmetrically: each device only computes the
mask corresponding to half of the frequency bands and
transmit it to the other device. This schema allows the
devices to transmit only half of the quantized values of
their amplitude and phase. If the left device computes
the mask for the first half of bands, M([1, · · · , k/2], l), it
should transmit ABAk

L ([k/2 + 1 − Nfrecs, · · · ,K], l) and
ΦBPk

L ([k/2 + 1 − Nfrecs, · · · ,K], l). The right device then
computes the mask corresponding to the second half of bands,
M([k/2 + 1, · · · ,K], l) and transmits ABAk

R ([1, · · · , k/2 +

Nfrecs], l) and ΦBPk

R ([1, · · · , k/2 + Nfrecs], l).

2.4. Computational cost of the proposed system

The computational cost is measured in number of instruc-
tions per frequency band (IPF ) required to process each time
frame. The analysis and synthesis filterbanks are usually im-
plemented in a specific processor, so these operations are not
considered. The implementation of the spatial filters require
N complex MAC operations for each band (IPF = 2N ).
The estimation of the TF mask involves the next steps: extrac-
tion of the input features (IPF = 50), LS-LDA (IPF = 28)
and mask generation (IPF = 4), totalling IPF = 82. The
application of the mask only requires 1 instruction. Accord-
ing to this, the total computational cost, with N = 2, is
IPF=87. Considering a state-of-the-art commercial hearing
aid, this represents only a 28% of the available IPF for signal
processing [8].

3. EXPERIMENTAL WORK

3.1. Description of the experiments

A database of 3000 speech-in-noise binaural signals has
been generated. It is split in two sets, one to design the
speech/noise classifier (50 %) and other to test the algorithm
(50 %). Speech signals are selected from the TIMIT database
[14] and noise signals from an extensive database (1000
records) that contains both stationary and non-stationary
noise. With the purpose of generalization, the speech and
noise signals used to generate the test set are not included
in the design set. Binaural mixtures are generated using the
head-related impulse responses (HRIR) included in the CIPIC
database [15]. Three different types of mixtures are gener-
ated: Type 1) 500 mixtures of speech with diffuse noise and
two directional noise sources; Type 2) 500 mixtures of speech
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Fig. 2: Average STOI as a function of the transmission bit rate (kbps)
for mixtures with SNR= -5 dB and SNR= 0 dB.

with two directional noise sources; Type 3) 500 mixtures of
speech with diffuse noise. Speech sources are placed in the
front position, the two directional noise sources are placed at
each side of the head at random positions, and diffuse noise is
simulated by generating isotropic speech-shaped noise. The
sampling rate is 16 kHz and the signals are transformed into
the TF domain with a short-time Fourier transform (STFT)
that uses a 128-points Hanning window with 50% of overlap
(K = 64). Each hearing aid contains two microphones in
endfire configuration, separated a distance of 0.7 cm.

The optimization problem formulated in (5) has been
solved using different values of BLIMIT , from 0 to 256 kbps.
All the experiments have been repeated with SNR of 0 dB
and -5 dB, which are low SNR values. The performance
of the system is measured with the short-time objective in-
telligibility measure (STOI) proposed in [16], which shows
high correlation with the intelligibility of TF weighted noisy
speech. STOI values range from 0 to 1, higher values corre-
sponding with higher intelligibility.

3.2. Results

Fig. 2 represents the obtained STOI values (averaged over the
test set) as a function of the transmission bit rate (kbps) for
mixtures with a SNR= -5 dB (red) and SNR= 0 dB (blue).
It also shows the average STOI values of the unprocessed
signals and the signals at the BF output (horizontal lines).
The obtained STOI values demonstrate that the proposed sys-
tem increases the output speech intelligibility. In the case
of SNR=-5 dB, the initial average STOI has a value of 0.56,
which is increased up to 0.61 at the output of the BF, which
is an important increment. The application of the TF mask
estimated with the proposed classifier obtains average STOI
values around 0.64, and this value is kept practically constant
for bit rates down to 8 kbps. Except in the case of 0 kbps,
the STOI obtained by the estimated TF mask is higher than
the one obtained at the output of the BF. The same relative
behaviour is found in the case of SNR = 0 dB, but with higher
STOI values.

Fig. 3 represents the average STOI values separated in
different types of noise, for SNR=-5 dB. As it was expected,
the lowest STOI values are obtained in the case of type 1,
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Fig. 3: Average STOI as a function of the transmission bit rate (kbps)
and the type of noise. SNR= -5 dB.

since speech is contaminated with the two types of noise.
Comparing the results of type 2 and type 3, we can deduce
that directional noise decreases more the output intelligibility
than omnidirectional noise with the same power. However,
the intelligibility improvement introduced by the proposed
system is more noticeable in the case of type 1, followed by
type 2, and finally in type 3. The differences between the
beamforming output and the output of the TF mask are simi-
lar in the cases of type 1 and type 2, but they are smaller in
the case of type 3. That means that most of the energy of the
diffuse noise is already removed by the BF, and the TF mask
does not introduce a noticeable improvement. Specifically,
for bit rates lower than 4 kbps, the application of the TF mask
is not beneficial if there is only diffuse noise.

4. CONCLUSIONS

From the results obtained in this work we can conclude
that the proposed binaural speech enhancement system is
able to increase the output speech intelligibility of speech
corrupted with different types of noise in low SNRs, even
with low transmission bit rates. In addition, the system is
energy-efficient: it requires less than a 28% of the available
computational resources and the transmission bit rate has
been limited to reasonably affordable values that guarantee
a minimum battery life, allowing to find a tradeoff between
transmission bit rate and system performance.

Furthermore, the obtained results demonstrate that di-
rectional noise affects more the intelligibility than diffuse
noise. Most of the diffuse noise power is removed by the
BF, whereas most of the remaining directional noise power
is removed by the TF mask. In an acoustic scenario when
only omnidirectional noise is present, the application of the
TF mask does not increase the output speech intelligibility
as much as in cases where directional noise is also present,
at least for low bit rates. From these results arose the idea
of using an acoustic environment classifier, which is usually
included in current hearing aids, to detect the presence of
directional or diffuse noise and to decide whether to apply the
TF mask or not. This problem should be further investigated
in the future.
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