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ABSTRACT

Automatic detection of pathological voice is a challenging
task in speech processing. Appropriate acoustic cues of voice
can be used to differentiate between normal voices and patho-
logical voices. We propose a method to represent each speech
utterance using three types of speech signal representations
(i.e., cross-correlation matrix, Gaussian distribution and lin-
ear subspace) respectively. Various kernels were applied to
these representations for measuring resemblance and differ-
ence. Four classifiers, i.e., KNN, kernel partial least squares,
kernel SVM, and logistic regression, are studied for compar-
ing their performance of classification. Finally, a simple fu-
sion of learning classifiers from different acoustic representa-
tions was carried out at the score decision level for enhancing
the performance. The different classifiers were evaluated on
the Interspeech 2012 challenge development data set and test
data set. Their effects in a fusion scheme are studied. The ac-
curacy of the fusion system attained 78.0 % on test set, with
an improved gain of 9.1 % over the challenge baseline 68.9
%.

Index Terms— pathological speech, intelligibility, corre-
lation structure feature, multiple kernel models

1. INTRODUCTION

Pathological speech is usually defined as the condition of
speech distortion due to functional and organic speech defects
and disorders of the organs of speech production [1, 2, 3]. For
example, the different locations and the size of the head and
neck tumors cause different distortion of speech signals. The
defects of any component of speech production (SP) may
lead to loss of intelligibility. Speech and voice characteristics
of dysarthric speech include imprecise and uncoordinated
articulation, variable speech rate, and variation in prosody
and rhythm [4]. Intelligibility detection of patients with
pathological voice can help possible intervention and rehabil-
itation. A clinically pathological diagnosis depends mainly
on subjective judgement of trained professionals. However,
the accuracy of the subjective evaluation is decided by the
experience of the listener, which may introduce a range of

subjective biases to the diagnostic procedure. Therefore, it
is desirable to use noninvasive biomarkers to detect intel-
ligibility of the pathological voice to help the clinician for
treatment.

It has been reported that several acoustic cues (source,
prosodic and frequency spectrum) are utilized for intelligi-
bility detection [5]. Various machine learning algorithms
have been used for intelligibility detection including Gaus-
sian mixture models, neutral network [6], and wavelet mod-
eling [7]. The intelligibility classification of pathological
speech has been investigated in the Interspeech pathology
sub-challenge [8]. Kim et al [9] fused multiple systems to
predict intelligibility. Huang et al [10, 11] investigated the
methods of asymmetric sparse partial least squares with-
out/with kernel for detecting comprehensibility of an ut-
terance. However any interpretation and how the classifier
works for intelligibility detection are missed. Recently a
mixture of experts approach has been proposed to model
complex class boundaries because of heterogeneity in patho-
logical conditions on time-domain analysis of data [12]. The
proposed work focused on the exploration of the correlation
and covariance of signals to divulge latent variables in the
stochastic systems that produce speech and the manifold-
based classification algorithms, which analyze data in non-
uniform time-frequency domain in terms of lower probability
of error and high speed.

In section 2, we present the NKI CCRT database. In sec-
tion 3, we outline the feature and the correlation feature ex-
traction. We present several principles of classifiers and fu-
sion method in section 4. In section 5, we show the results.
Finally, we conclude our study.

2. PATHOLOGICAL DATABASE

The NKI CCRT speech database [13] were used for intelli-
gibility detection. It consists of speech recordings from 55
patients who have neck and head cancer. The intelligibility of
their speech were scored on a scale of 1-7. The speech record-
ings were collected during three stages of Chemo-Radiation
Treatment of patients: before Chemo-Radiation Treatment,
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Table 1. List of features for intelligibility detection of patho-
logical speech

Features Statistical functionals
Log HNR, F0, mean, range, quartiles

Voicing, Shimmer std, max, min
Formant frequencies

delta MFCCs
Loudness, RMS Energy, ZCR mean, std, max, min
RASTA-style filtered spectrum avg dur., avg pitch slope

10-weeks after Chemo-Radiation Treatment and 12-months
after Chemo-Radiation Treatment. Based on evaluation from
thirteen native speech pathologists who speak Dutch, the ma-
jority voting rule is employed to obtain scores.

For the purpose of the pathology sub-challenge [8], the bi-
nary labels of intelligibility (non-intelligible (NI) and intelli-
gible (I)) were acquired using the midpoint of a scale on same
dataset. Overall we have 2385 utterances (NI:1185, I:1200)
for the binary classification experiment.

3. FEATURE CONSTRUCTION

3.1. Low Level Features

The study showed the usefulness of voice source (voice qual-
ity) and prosodic features for detecting intelligibility, but the
spectral features have not shown significant contribution to
the final fusion scheme [11]. As the spectral features cap-
ture the speech speed, disfluency, and the mispronunciation
of phones, we chose delta-mel-cepstra and formant frequen-
cies to manifest alterations in vocal tract shape and dynamics.
We hypothesize such alterations that happen with vocal tract
aberrations because of tumors. Opensmile is used to extract
the features [14] and Table 1 shows the list of features.

Mel-cepstra (MFCCs) are used to generate delta MFCCs
by subtracting the 16 mel-cepstra across succeeding data
frames with a length of 10 ms in each utterance. The for-
mant dynamics of the vocal tract can be considered as one
way to show articulatory alterations in the pathological voice.
Formant frequencies can be estimated by a Kalman-based
formant predictor [15]. Formant frequencies are computed
on data frames with a length of 10 ms. Inspired from a
multi-scale approach [16], these two features are extracted at
different sample delay spacing 30-ms delay and 10-ms delay,
respectively.

3.2. Structure of Feature Correlation

The structure of feature correlation is studied, stimulated by
the perception that auto- and cross-correlations of speech sig-
nals represent the physiological source changes and coordina-
tion of vocal tract trajectories due to a tumor [16].

After extracting speech cues, a set of feature vectors of
utterances can be denoted by F = [f1, f2, · · · , fn], where
fi ∈ Rd represents the ith utterance with a d-dimensional
feature descriptors. Applying to the set of feature vectors, the
three types of auto- and cross-correlation, and Gaussian dis-
tribution are exploited for their ability of seizing data changes
to model pathological voice.

3.3. Multiple Kernel Models

The study has shown that the manifold structure can be ex-
ploited for dimensionality reduction or feature extraction
as well as improvement of classification performance [17].
Therefore, three types of auto-correlation, covariance ma-
trix, and Gaussian distribution are formulated into manifold
structures [18].

3.3.1. Kernels for Linear Space

The auto-correlation of feature set F = [f1, f2, · · · , fL] can
be expressed in a linear subspace V ∈ Rd×k through singular
vector decomposition (SVD) in the following

L∑
i=1

fif
T
i = V ΓV T (1)

where L is the number of acoustic features of an utterance,
V = [v1, v2, · · · , vk], vj is the jth eigenvector, k is the num-
ber of columns of the subspace.

The speech samples can be formed an ensemble of lin-
ear subspaces, which are considered as the data on Grass-
mann manifold M (Riemmannian manifold), denoted by V =
Vi

N
i=1, where N is the number of utterances. Using Mercer

kernels [19], the similarity can be calculated between two
data points Vi and Vj by mapping the Grassmann manifold
to Euclidean space. From the principal angles between two
subspaces, the projection kernel is given by:

Kproj.−poly.
i,j = (η∥V T

i Vj∥2F )α (2)

where an element of the kernel matrix is Kproj.−poly.
i,j . The

projection function is Φproj. = ViV
T
i . A type of RBF ker-

nel can be obtained using Φproj. by:

Kproj.−poly.
i,j = (η∥Φproj.(Vi)− Φproj.(Vj)∥2F ) (3)

3.3.2. Kernels for Cross-correlation Matrix

The vocal feature set is also expressed with a cross-correlation
matrix of d× d dimensions:

C =
1

n− 1

n∑
i=1

(fi − f̂)(fi − f̂)T (4)
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where a mean vector of the vocal features is denoted by f̂ .
The nonsingular cross-correlation matrices of d × d dimen-
sional are symmetric positive definite (SPD) matrices on a
Riemmannian manifold. Such non-singular covariance ma-
trices C = {Ci}Ni=1, is considered as data on the symmet-
ric positive definite Riemannian manifold. The distance of
log-euclidean (DLE) can be used as distance metric for the
SPD matrices. Based on DLE and applying an ordinary ma-
trix logarithm operator to C, a Riemannian kernel was used
to compute the inner product of T by mapping the data on
the Riemmanian manifold of the SPD matrix to those in the
tangent space:

Kdle−poly.
i,j = (ηtrace∥ log(Ci) · log(Cj)∥)α (5)

The mapping corresponding to Kproj.−poly.
i,j is obtained by

Φdle = log(Ci). As a type of RBF, the kernel can be obtained
using Φdle as

Kdle−rbf
i,j = (η∥Φdle(Ci)− Φdle(Cj)∥2F ) (6)

3.3.3. Gaussian Distribution Kernels

Assuming the feature vectors f1, f2, · · · , fn with an n-
dimensional Gaussian distribution N(b,Γ):

b = E(fi) =
1

n− 1

n∑
i=1

fi (7)

Γ = E[(fi−µ)(fi−µ)T ] =
1

n− 1

n∑
i=1

(fi−µ)(fi−µ)T (8)

where b and Γ are the mean and covariance of feature vectors.
They are jointly modeled in a single Gaussian model.

A multivariate Gaussians matrix of d-dimensional is a
Riemannian manifold. Incorporated into the space of SPD
matrices, a Gaussian matrix N(b,Γ) of d-dimensional can be
particular expressed by a SPD matrix G of (d+ 1)× (d+ 1)
dimensional in the following:

N(b,Γ) ∼ G = |Γ|−
1

d+1

[
Γ + bbT b

bT 1

]
(9)

Using the SPD matrices G = Gi
N
i=1, the corresponding Rie-

mannian kernels can be calculated as:

Kdle−poly.
i,j = (ηtrace∥ log(Gi) · log(Gj)∥)α

Kdle−rbf
i,j = exp(η∥Φdle(Gi)− Φdle(Gj)∥2F )

(10)

4. COMBINATION OF CLASSIFIERS

The feature construction approach may produce multiple fea-
tures from different domains. Moreover, the patterns of fea-
tures and correlation between features may be different for

each subject. Thus, it is desirable to develop a multivariate fu-
sion and classifiers that can efficaciously combine both with-
out and with contextual information from multiple input fea-
tures and subject identity (e.g., gender) in making its patho-
logical prediction.

4.1. Classifiers

In [9], K-nearest neighbor (KNN) was used to assess the dis-
criminating capacity of the feature sets at sentence-level of
individual sub-systems and feature fusion in comprehensi-
bility detection using the NKI CCRT Speech Corpus. The
KNN shows promising results for intelligibility classification.
Therefore, KNN is used to evaluate the features from different
domains. For this work, the kernel SVM in a LibSVM [20]
implementation is employed on the pre-computed Rieman-
nian kernel matrices for classification. A logistic regression
with L2-regularization is applied to these sets of features for
detection. The Liblinear implementation is exploited for opti-
mization [21]. The asymmetric partial least squares classifier
is used for classification as well [11].

4.2. Combination System

Individual classifier learns six Riemannian kernels with dif-
ferent speech features. A term w is introduced for score fu-
sion of different classifiers at decision level:

Sfusion =
M∑
i=1

wiSi (11)

M is the number of classifiers, wi is the weight for the i-th
classifier, and Si is the score of i-th classifier.

5. EXPERIMENTAL RESULTS

We apply the four classifiers (KNN, kernel SVM, LR, and
ASIMPLS) to the different aspects of speech production in
Table 1: speech source cues, vocal tract cues and prosodic
cues. Although the weighted average recall is also presented
in this study, the unweighted average recall of classes I and
NI is used to compare all classification performances with the
challenge dataset in order to align with the challenge setup.

Table 2 shows the performance of four classifiers learned
from six Riemannian kernels using different speech features
of the NCSC test sets. The spectral feature set of formant
frequencies and delta MFCCs at multi-scales has the highest
unweighted average recall of the individual feature set. It im-
plies that the correlation of this spectral feature set can capture
the changes that occur with the vocal tract shape and dynam-
ics due to the location and size of tumors.

Considering the high scores in subsystems such as Lo-
gistic Regression with kernel (proj.-poly.) on voice source
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Table 2. Unweighted accuracy recall (%) on the test set based on different feature sets

(a) Voice Source Cues
Linear Space Cross-correlation matrix Gaussian Matrix

proj.-poly. proj.-rbf dle-poly. dle-rbf dle-poly. dle-rbf
kernel kernel kernel kernel kernel kernel

KNN 66.10 % 65.89 % 66.02 % 54.23 % 63.84 % 60.26 %
SVM 64.56 % 63.27 % 64.47 % 52.34 % 61.78 % 58.24 %

Logistic Regression 71.64 % 61.04 % 44.07% 62.87% 42.78 % 60.76 %
ASIMPLS 69.40 % 69.42 % 69.47 % 69.52 % 61.78 % 68.85 %

(b) Vocal Tract Cues
Linear Space Cross-correlation matrix Gaussian Matrix

proj.-poly. proj.-rbf dle-poly. dle-rbf dle-poly. dle-rbf
kernel kernel kernel kernel kernel kernel

KNN 68.23 % 65.89 % 69.42 % 53.67 % 68.84 % 67.63 %
SVM 69.48 % 66.72 % 70.47 % 56.74 % 69.78 % 66.67 %

Logistic Regression 69.45 % 68.35 % 48.73% 61.78% 48.96 % 68.36 %
ASIMPLS 73.10 % 73.12 % 70.91 % 70.42 % 69.58 % 70.65 %

(c) Prosody Cues
Linear Space Cross-correlation matrix Gaussian Matrix

proj.-poly. proj.-rbf dle-poly. dle-rbf dle-poly. dle-rbf
kernel kernel kernel kernel kernel kernel

KNN 68.89 % 66.82 % 68.62 % 58.23 % 66.04 % 64.26 %
SVM 70.56 % 68.65 % 44.27 % 69.34 % 46.78 % 67.24 %

Logistic Regression 70.94 % 68.04 % 44.07% 69.87% 45.78 % 67.67 %
ASIMPLS 72.02 % 72.02 % 70.17 % 71.82 % 70.78 % 71.95 %

features, ASIMPLS with kernel (proj.-rbf) on vocal tract fea-
tures, and ASIMPLS with kernel (proj.-poly.) on prosody fea-
tures, we propose a system using the fusion of these three
subsystems.

Then a comparative study was performed on the proposed
system, the winner system [9], the 2nd place system [22], the
3rd place system [10], ASKPLS [11], the baseline RF [8], and
the baseline SVM [8]. While the accuracy of classification on
the development set manifests 74.1 % of the unweighted av-
erage recall, the test set classification provides 78 % accuracy
in Table 3.

Table 3. The comparative results of the proposed method, the
winner system [9], the 2nd place system [22], the 3rd place
system [10], ASKPLS [11], the baseline SVM, and the base-
line RF [8]).

System dev set (%) test set (%)
Proposed method 74.1 78.0

Joint classification([9]) 79.9 76.8
S-GPR+KPCA ([22]) 77.6 73.7

ASPLS ([10]) 66.0 71.9
ASKPLS ([11]) 62.9 74.0

Baseline RF ([8]) 64.8 68.9
Baseline SVM ([8]) 61.1 68.0

6. CONCLUSION

We propose to model each speech utterance using three types
of speech signal representations (i.e., linear subspace, Gaus-
sian distribution, and covariance matrix) respectively. Differ-
ent kernels are applied to these representations for measuring
similarity and difference. We explored the discrimination ca-
pabilities of each representation for detecting the intelligibil-
ity of pathological voice. The correlation structure of formant
frequencies and the delta MFCCs at multi-delay scales have
more capabilities in discrimination of pathological voice from
normal voice. For the test set, the final proposed system can
achieve an unweighted average recall performance of 78.0%.
We continue to investigate more salient speech cues for intel-
ligibility detection of the pathological voice in the future.
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