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ABSTRACT 

Technology-based therapy tools can be of great benefit to 

children with developmental speech disabilities as they 

typically require sustained practice with a speech therapist 

for several years. Towards this aim, over the past 4 years we 

have developed speech processing tools to automatically 

detect common errors in disordered speech. This paper 

presents an automated technique to identify incorrect lexical 

stress. Specifically, we describe a deep neural network 

(DNN) that can be used to classify the four different 

bisyllabic stress patterns: strong-weak (SW), weak-strong 

(WS), strong-strong (SS) and weak-weak (WW). We derive 

input features for the DNN from the duration, pitch, 

intensity and spectral energy on each of the two consecutive 

syllables. Using these features, we achieve 93% correct 

classification between SW/WS stress patterns and 88% 

correct classification of the four bisyllabic patterns on 

speech from typically developing children, while we obtain 

73.4% classification between SW/WS in disordered speech. 

These figures represent a two-fold reduction in error rates 

compared to our prior work, which used a DNN with 

differential features from consecutive syllables. 

Index Terms— deep neural network, prosody, lexical 

stress, automated speech therapy. 

1. INTRODUCTION 

English is a stress-timed language in which lexical stress 

plays an important role in intelligibility. Children with a 

range of speech disorders, including childhood apraxia of 

speech (CAS), struggle to produce the correct lexical stress 

patterns [1]. Treatment for CAS involves extensive 

interactive sessions with a speech language pathologist 

(SLP) [2]. During treatment, the SLP guides the child on 

how to control stress levels in pairs of adjacent syllables [3]. 

Automatic speech therapy tools can facilitate this treatment 

process, making it more practical and cost-effective and 

allowing children to practice remotely in their own homes. 

In earlier work [4] we proposed a client-server architecture 

to facilitate remote speech therapy for children with CAS. 

The system consists of a tablet application where children 

can perform speech exercises, and a remote server running a 

speech processing engine to detect articulation errors [5], 

production delays and lexical stress (prosodic) errors.  

In this paper, we focus on the detection of prosodic 

errors in children’s disordered speech, specifically the 

detection of stress level variations between consecutive 

syllables. We present a deep neural network (DNN) 

classifier to distinguish between the four possible bisyllabic 

stress patterns in multi-syllabic English words, strong-weak 

(SW), weak-strong (WS), strong-strong (SS) and weak-

weak (WW). Using features derived from the duration, 

pitch, intensity and spectral energy of two consecutive 

syllables, we achieve 88% correct classification of the four 

bisyllabic patterns on speech from typically developing 

children and 73.4% classification between SW/WS in 

disordered speech. This work is unlike the current literature 

on lexical stress, which has focused primarily on detecting 

the most stressed syllable in multi-syllabic words. 

The rest of the paper is organized as follows. Section 2 

briefly summarizes prior work on lexical stress. The 

methods used for feature extraction, the classifier 

architecture and the speech corpus used are provided in 

Section 3. The experiments conducted and results obtained 

are detailed in Section 4 and finally the conclusions 

presented in Section 5. 

2. PRIOR WORK 

The existing work on lexical stress mostly targets adult 

second language (L2) learning applications, where detecting 

the most stressed syllable in multi-syllabic words is an 

important problem. In [6], a system that used the RMS 

energy of specific frequency bands along with basic 

prosodic features to automatically detect the most stressed 

syllable within a word achieved an accuracy of 87%-89%. A 

separate binary SVM classifier was trained for each vowel 

to be classified as stressed or unstressed in [7]. In [8], 

different machine learning algorithms were used to classify 

different stress patterns in 3&4 syllabic words. When tested 

on one female user data, it achieved an accuracy of 83% - 

88%. Given the success achieved with DNNs [9] in speech 

recognition, there is now interest in using them to detect 

lexical stress; a DNN network was developed in [10] to 

detect syllable stress level in L2 English speech.  

In previous work, we computed a variability measure of 

different sets of acoustic features extracted from pairs of 

consecutive syllables and used them as inputs in three 

different shallow machine learning algorithms (SVM, 
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MaxEnt, MLP) [11] as well as a DNN classifier [12]. The 

DNN architecture outperformed the shallow classifiers by 

5%, with an overall classification accuracy of 85%. In this 

paper, we use raw acoustic features rather than their 

differential version to train a DNN classifier to distinguish 

between the four possible bisyllabic stress patterns. Feeding 

the DNN with raw features results in a substantial 

improvement of 10% in classification accuracy compared to 

a DNN classifier using differential features. The 

performance of the DNN improves because the many hidden 

layers of the DNN networks operate as hierarchical feature 

detectors that capture higher-order correlations between the 

raw features as similarly observed in [13, 14].  

3. METHODS 
  

3.1. System description 

Our proposed lexical stress classifier requires access to the 

speech signal along with the prompted word in the therapy 

exercise.  As shown in Figure 1, the speech signal is first 

force-aligned with the predetermined phoneme sequence of 

the word; this is performed using a Hidden Markov Model 

(HMM) Viterbi decoder along with a set of HMM acoustic 

models trained from the same corpus. Once the time 

boundaries for each phoneme have been determined, the 

algorithm extracts a set of features from 10 msec non-

overlapped frames of each syllable and then combines both 

raw and differential features of each pair of consecutive 

syllables. Lastly we train two DNN classifiers using the raw 

and differential feature sets and compare their accuracies. 

3.2. Feature extraction 

Lexical stress can be identified by variations in pitch, energy 

and duration between different syllables in a multi-syllabic 

word [15], with a stressed syllable having higher energy and 

pitch and longer duration than other syllables within the 

same word. Accordingly, we extract seven features (𝑓1 −
𝑓7) related to these characteristics as listed in Table 1. 

Feature Description 

𝑓1 Peak-to-peak TEO amplitude over syllable nucleus 

𝑓2 Mean TEO energy over syllable nucleus 

𝑓3 Maximum TEO energy over syllable nucleus 

𝑓4 Nucleus duration 

𝑓5 Syllable duration 

𝑓6 Maximum pitch over syllable nucleus 

𝑓7 Mean pitch over syllable nucleus 

𝑓8 27 Mel-scale energy bands over syllable nucleus 
 

Table 1: The extracted acoustic features 

The energy based features (𝑓1, 𝑓2, 𝑓3) are extracted after 

applying the non-linear Teager energy operator (TEO), 

which provides a better estimate of the speech signal energy 

and also reduces noise [16]. The nucleus and syllable 

durations are determined from the force alignment process. 

The pitch values is estimated using the auto correlation 

method and the mean and maximum values computed over 

the duration of the nuclei [17]. These seven stress detection 

features [6-8, 10] are computed for each syllable, resulting 

in two values per bisyllabic pair. In addition, we also 

compute Mel scale energies for each frame of the nucleus.  

3.3.  Raw features 

As seen in Figure 1, to input the raw extracted features 

directly to the DNN, we concatenate the extracted features 

into one wide feature vector. Each syllable has 7 scalar 

values 𝑓1 − 𝑓7 and 27 ∗ 𝑛 Mel-coefficients where 𝑛 is the 

number of frames in each syllable’s vowel. To handle 

variable vowel lengths, we limit the number of input frames 

provided to the DNN to a maximum 𝑁 frames for each 

syllable. This provides the DNN with a fixed length Mel-

energy input vector and allows the DNN to use information 

about the distribution of the Mel-energy bands over the 

vowel. If the vowel length (𝑛) is greater than 𝑁 frames, only 

the middle N frames are used. If the length of the vowel (𝑛) 

is smaller than 𝑁 frames, inputs frames are padded to 𝑁 

frames. The final size of the input vector to the DNN is 2 ∗
(7 + 27 ∗ 𝑁) for a pair of consecutive syllables, with 𝑁 

tuned empirically. 

3.4. Differential features 

To produce one compact input feature vector for the DNN 

representing the variation between two consecutive 

syllables, we compute the pair-wise variability index (PVI) 

for each feature as in Figure  1 [18]. The PVI of two 

consecutive syllables for each feature 𝑓𝑖   is given by 

        

Figure 1: Block diagram of the classification process; 𝑓𝑖
(1)

 and 

𝑓𝑖
(2)

 are the ith feature of the first and second syllable 

respectively, 𝑛(1) and 𝑛(2) are the number of frames of the first 

and second syllables’ nuclei respectively, 𝑃𝑉𝐼𝑖 is the pairwise 

variability index computed from the ith features of the two 

adjacent syllables and N is the number of input frames.  
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𝑃𝑉𝐼𝑖 =  
𝑓𝑖

(1)
− 𝑓𝑖

(2)

(𝑓𝑖
(1)

+ 𝑓𝑖
(2)

)/2
 (1) 

where the subscript 𝑖 indicates the feature index while the 

superscript (1-2) indicates the syllable index. Thus a single 

value for features 𝑓1 − 𝑓7  is computed from the two feature 

values obtained from the two consecutive syllables, e.g. the 

syllable’s PVI vowel TEO maximum energy, PVI duration. 

As the spectral features, on the other hand, consisted of 27 

Mel-coefficients for each frame of the syllable’s vowel, we 

first average the energy in each frequency band over all 

frames to produce 27 values per syllable. We then compute 

the PVI of each of these 27 averaged energies. Thus in total, 

we obtain a total of 34 features to represent each pair of 

consecutive syllables. 

3.5. Deep neural network (DNN) 

The DNN in Figure 1 is trained using the mini-batch 

stochastic gradient decent method (MSGD) with adaptive 

learning rate. The learning rate starts with an initial value 

(typically 0.1) and after each epoch the loss in the error of 

the validation data set is computed. If the loss is greater than 

zero (i.e. the error increases) the training continues with the 

same learning rate.  If the error continues increasing for 10 

consecutive epochs, the learning rate is halved and the 

parameter of the classifier returned to the one that achieved 

minimum error. Training is terminated when the learning 

rate reaches its minimum value (typically 0.0001) or after 

200 epochs, whichever is earlier. The performance of the 

DNN is then computed using a separate testing set. The 

input size of the DNN is dependent on the type of features 

(raw vs. differential) and when using raw features, the frame 

size.  We also tune the number of hidden layers and number 

of units in each layer of the DNN empirically.  

3.6. Speech corpus 

Due to the limited disordered speech corpora available, we 

evaluated the algorithm on two speech corpora: the OGI 

kids’ speech corpus [19] and disordered speech we collected 

from children with CAS. The OGI kids’ speech corpus 

consists of recordings from 1,100 children ranging from 

grade 0 to 10, with each child pronouncing 200 single words 

and 100 full sentences. Only clear and correctly pronounced 

speech files are used to train, validate and test our classifier. 

We excluded full sentences in our study, focusing only on 

multi-syllabic single words for which lexical stress patterns 

could be classified. 
Since the speech corpus was collected from native 

English speakers, we used the CMU English pronunciation 

dictionary to extract the phoneme sequence and assign stress 

levels to each syllable. Both primary and secondary stress 

syllables were marked strong, while the unstressed syllable 

was marked weak.  

The system was tested as well against disordered 

speech we collected from 10 children with CAS aged 4 - 12 

years, each pronouncing 15 isolated words: 10 with a SW 

pattern across the first two syllables (e.g., DInosaur) and 5 

with a WS pattern (e.g., toMAto). These words were 

selected from the Nuffield Dyspraxia Programme-3 [20] 

therapy words list. Table 2 shows the data distribution over 

the training, validation and testing sets. 

 

   Bisyllabic stress patterns 

Children SW WS SS WW 

D
at

as
et

 Training 370 6000 6000 4500 2000 

Validation 70 1000 1000 700 350 

Testing 70 1000 1000 700 350 

CAS 10 115 38 - - 

Table 2: Statistics of the different data sets 

4. EXPERIMENTS AND RESULTS 
  

4.1. Raw feature DNN 

In a first experiment, we assessed the performance of the 

DNN using raw features from each syllable in a pair of 

consecutive syllables, as explained in Section 2.3. For this 

purpose, we trained two separate DNNs, one to classify 

between unequal bisyllabic stress patterns SW/WS, and a 

second one to classify between the four bisyllabic stress 

patterns SW/WS/SS/WW. Using a fixed vowel frame size of 

𝑁 = 25, we evaluated different DNN architectures with 1 to 

6 hidden layers and 50 to 600 hidden units per layer. Results 

are summarized in Figure 2 for the 2- and 4-class DNN. 

 

 

Figure 2: Classification rates as a function of the number of 

hidden layers and units/layer in the DNN for: (a) unequal 

bisyllabic lexical stress patterns SW/WS and (b) all bisyllabic 

lexical stress patterns SW/WS/SS/WW. 

(a) 

(b) 
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The figures indicate that the DNN clearly outperforms 

the shallow (single hidden layer) NN in both classifiers. In 

the 4-class DNN, the error rate decreases from 20% for a 

single hidden layer with 50 units/layer down to 14% by 

adding one more hidden layer with 200 units. For the 4-class 

DNN, a minimum classification error rate of 12% is 

achieved using 4 hidden layers with 500 units/layer; for the 

2-class DNN, the best error rate of 7% is obtained using 6 

hidden layers with 600 units/layer.  

Next, we examined the effect of vowel frame length (as 

used to extract the Mel energy input vector). Results are 

shown in Figure 3 for values of 𝑁 from 10 to 30. For both 

DNNs (2-class and 4-class), error rates decrease initially 

with an increasing number of input frames till a minimum of 

11% at 20 frames (200 msec) for the 4-class and 7% at 25 

frames (250 msec) for the 2-class. After that, the 

performance degrades with an increasing number of frames. 

 
Figure 3: The classification error rate of 2- and 4-class DNN 

as a function of the number of input frames. 

4.2. Comparison of raw and PVI feature DNN 

In a second experiment, we examined the ability of the 

DNN to learn from raw features compared to a DNN with 

PVI features. Since PVI features only capture the variation 

in consecutive syllables, they cannot differentiate between 

SS and WW patterns. Hence, when using the PVI-based 

DNN, we combined both of these two classes into one class 

with syllable pairs of Equal stress. The minimum error rate 

for the PVI-based DNN was obtained using 6 hidden layers 

with 200 units/layer for the 2-class, and 5 hidden layers with 

100 units/layer for the 4-class. 

Figure 4 shows error rates for the DNN trained on raw 

features and the DNN trained on PVI features when 

classifying SW/WS syllables, whereas Figure 5 shows error 

rates for classification of SW/WS/SS/WW syllables. These 

results indicate that raw features increase the performance of 

both classifiers, with error rates dropping to 6.6% compared 

to 8.1% when using PVIs to classify SW/WS patterns. The 

benefits of raw features are more significant in the 

classification of the 4 classes, where they lead to a two-fold 

reduction in the overall error rate compared to PVI features. 

Finally, we tested the developed system against the 

disordered speech corpus. As it contained only SW/WS 

patterns, we used the best performing, binary DNN classifier 

fed with raw features. The system correctly classified 73% 

and 75% from the SW and WS patterns with an overall 

accuracy of 73.4%. This performance degradation can be 

explained by the pronunciation errors in the disordered 

speech, resulting in inaccurate phone alignment. It is worth 

noting, earlier [21] we found that though the inter-rater 

reliability between two therapists marking lexical stress was 

98% for typically developing children, it dropped down to 

82% for children with CAS. 

 
Figure 4: Comparison between the raw and PVI feature DNNs 

when classifying SW/WS bisyllabic stress patterns. 

 
Figure 5: Comparison between the raw and PVI feature DNNs 

when classifying SW/WS/SS/WW bisyllabic stress patterns. 

(Equal =  SS + WW) 

5. CONCLUSION 

In this paper we present a DNN classifier to detect bisyllabic 

lexical stress patterns in multi-syllabic English words. The 

DNN classifier is trained using pitch, energy and durational 

features extracted from pairs of consecutive syllables. The 

feature set of each pair of consecutive syllables is combined 

by 1) concatenating the raw features into one wide vector or 

2) computing a variability index to produce one compact 

feature vector representing the variation in the features of 

the two syllables. Test results on children speech show that 

the DNN performs better when trained with raw features, as 

they provide more information than the abstract PVI values. 

In particular, using raw features reduced error rates by 50% 

on the 4-class problem (SW/WS/SS/WW) when compared 

to a DNN based on differential features. Our proposed 2-

class DNN correctly classifies 93% and the 4-class DNN 

correctly classifies 89% of the bisyllabic lexical stress 

patterns in the test dataset of typically developing children 

and of 73.4% with disordered speech. 
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