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ABSTRACT

For the distant speech recognition, the multi-channel processing
has been proven to significantly improve the ASR performances
compared to the single channel approaches. However, there is very
little work has done to provide a comparative evaluation of the
approaches, particularly with the modern Deep Neural Network
(DNN) recognizers. In this paper, we address the above problem by
evaluating the most recently reported mutti-channel methods for the
distant speech recognition under urban environments using the 3rd
CHiME Challenge database. Particularly, we analyse the effects of
each stage of processing of beamforming, adaptive noise cancella-
tion and dereverberation. The back-end processing components are
also investigated. We further describe in details our best performing
system which combines a harmonic to subharmonic ratio (SHR)
voice activity detection, and correlative beamforming with adaptive
channel selection in the from-end; semi-supervised DNN adaptation
and RNN language model rescoring in the back-end. The system
achieved impressive 60% and 55% relative WER reductions on the
development set, as well as 65% and 60% of the same on the test
set, for real and simulated data sets, respectively.

Index Terms— CHiME Challenge, distant speech recognition,
correlative beamforming, semi-supervised speaker adaptation

1. INTRODUCTION

Distant speech recognition in realistic urban environments is a new
and very challenging task due to high level of noise and interfer-
ences, echoes and reverberations, as well as attenuations and distor-
tions. The 3rd CHiME Challenge [1] aims to test the performance
of automatic speech recognition in a real-world, commercially mo-
tivated scenario: a person talking to a tablet device that has been
fitted with a six-channel microphone array. The CHiME-3 scenario
is ASR for a multi-microphone tablet device being used in every-
day environments. For the challenge, four varied environments have
been selected: cafe (CAF), street junction (STR), public transport
(BUS) and pedestrian area (PED). For each environment, two types
of noisy speech data have been provided, real and simulated. The
real data consists of new 6-channel recordings of sentences from the
WSJ0 corpus spoken in noisy environments. The simulated data was
constructed by mixing clean utterances from that corpus into back-
ground recordings made in the four CHiME-3 environments. For
ASR evaluation, the data is divided into official training, develop-
ment and test sets.

Recently, different multi-channel approaches have been reported
in the Reverb challenge [2] which is more focused on simulated
room environments. The problem is that all the approaches had been
evaluated with different back-end recognizers and hence it is impos-
sible to compare them to make conclusions, particularly under this
new urban environment conditions.

The aim of this paper is hence to perform comprehensive eval-
uations of the multi-channel approaches on the 3rd CHiME Chal-
lenge database with the same advanced DNN back-end recognizer
in order to recommend the best design for the task. Since the multi-
condition training has been approved to be superior to the clean train-
ing, we shall focus on that training method only. Finally, based up
on the results from evaluations, we develop our best performing sys-
tem which includes harmonic-to-subharmonic ratio (SHR) voice ac-
tivity detection, correlative beamforming with adaptive channel se-
lection in the front-end, semi-supervised DNN adaptation and RNN
language model rescoring in the back-end.

2. MULTI-CHANNEL PROCESSING METHODS

In this section we highlight the most important multi-channel pro-
cessing for distant ASR which have been reported in the literature.

2.1. Beamforming

Beamforming is a linear spatial filter which makes use of the known
or estimated location of the sound source to utilize a sound directiv-
ity beam to enhance the target signal while reducing the background
noise. This has been proven to be the most effective among speech
enhancement methods for ASR due to its low distortion level while
gradually improving the signal to noise ratio (SNR).

2.1.1. Delay-and-sum

The delay-and-sum (DS) method enhances the signal by aligning
channels to the sound source before adding them up:

y (t) =

N∑
i=1

wixi (t− τi), (1)

where the weights wi are normally set to equal one, τi denotes the
aligning time of the channels, y (t) denotes the output beamform-
ing, xi (t) -the channel signals. Since the sound source location is
unknown, the channels are aligned to a reference channel and hence
it is called the time difference of arrival (TDOA) which is estimated
by maximizing the Generalized Cross Correlation Phase Transform
(GCC-PHAT) denoted as follows:

τi = argmax
∆

[
F−1

{
Xi (ω) X̄ref (ω)∣∣Xi (ω)

[
X̄ref (ω)

]∣∣
}]

, (2)

where X (ω) is the complex spectrum of the signal x (t), ∆ is the
time argument of the inverse Fourier transform function which is
denoted by F−1. The reference channel is initialized as the chan-
nel with the highest estimated SNR from an initial segment on each
channel and then iteratively tracking to the lowest negative TDOAs
until they turn positive.
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Fig. 1. Overview of our CHiME-3 speech recognition system for noisy reverberant conditions.

2.1.2. Minimum Variance Distortion Response (MVDR)

The MVDR-processed waveforms were provided by the organiz-
ers [1] as the baseline enhancement technique. Unlike the delay-and-
sum, MVDR is a spectrum-based beamforming method designed to
minimize the variance of the output subject to a constraint of gain,
noted as

w = argmin
wTHd=1

wTQw (3)

Assuming an uncorrelated noise field, it yields a tractable form so-
lution:

w =
Q−1Hd

Hd
TQ−1Hd

, (4)

where Q−1 is the estimated noise covariance matrix [3] and Hd

denotes the direct path of the sound source propagation which can
be expressed as

Hd (ω) =
[
α1e

−iωτ1 , ..., αNe−iωτN
]T

. (5)

Assuming omnidirectional microphones, we can set the gains αi to
1 and the time delay τi is replaced by TDOA estimated above. The
MVDR is well known to be effective in diffused room noise condi-
tions [2] but may get problems over unexpected directional interfer-
ences [4] due to its noise field uncorrelation assumption. The above
will be later reaffirmed in our experiments.

2.1.3. Adaptive correlative beamforming

Unlike delay-and-sum beamforming, the adaptive correlative beam-
forming method takes into consideration possible changes in the
sound source location and hence, allows updating of weighted co-
efficients. In this work, we build our system following the idea of
updating the weighted coefficients using cross correlation coefficient
segment-by-segment [5]. Our processing also includes start point de-
tection, reference channel selection, TDOA alignment, and adaptive
channel removal. The start point detection roughly detects when to
start the processing. Our system uses the harmonic to sub-harmonic
ratio (SHR) [6] [7] as a feature for voiced speech detection. To im-
prove the robustness under mismatched conditions, we normalized
the SHR by the sub-harmonic energy [8]

The reference channel selection is done by comparing the sum-
mary cross-correlation peaks between each channel and the rest of
channels within a one second window:

xcorri =

N∑
j=1,j 6=i

xcorr[i, j] (6)

where N = 6 is the number of channels, and xcorr[i, j] is the stan-
dard cross- correlation coefficients between channels i and j over
the speech region of the utterance. The channel i with the highest
average cross-correlation is chosen as the reference channel.

After alignment, the final step before output signal generation is
an adaptive weighting and channel elimination strategy based on the
standard cross-correlation xcorr[i, j] of the aligned channels.

To reduce the effects of unexpected interferences, a smooth-
ing is applied on the adaptive weight calculation: starting from an
even weighting in the first analysis window, wm[c = 1] = 1

M
, the

weights are updated continuously as follows:

wi[t] = (1− α)wi[t− 1] + α
xcorri[t]∑N

m=1 xcorri[t]
(7)

where α = 0.05 and xcorrm[t] is now calculated from the TDOA
aligned frame t.

The adaptive channel elimination strategy is applied to remove
noise and distortions affecting a small number of microphones, and
also acts to remove microphones that have failed completely. As
such, the value of xcorrm[t] is used as a measure of the channel
quality, and a threshold is applied to remove poor frames:

xcorrm[t] <
1

M

N∑
i=1

(xcorri[t])− β (8)

where segments matching this criteria have weights wm[t] = 0 with
the subsequent weights normalized to sum to 1. The parameter β
controls the strength of the channel rejection, and was empirically
set to 0.04 in our experiments. Overlap-and-add summation is then
performed with a triangular window to smooth any discontinuities
between overlapping frames. A further channel rejection strategy
was also used, whereby if any channel repeatedly met the elimina-
tion criteria over the utterance, it would be removed completely and
the beamforming reinitialized without this channel. Particularly, the
channel is removed if quarter of frames were rejected. The rejection
method was found to perform well in the case of microphone fail-
ure or distortion, or to automatically remove the rear-facing noise
channel if the noise level was too high.

2.2. Adaptive noise cancellation

Adaptive noise cancellation is used as the second stage of beam-
forming for further cancellation of the directional noise components
remaining from the initial beamforming output. This can also be un-
derstood as cancelling side lopes in the beamforming directivity and
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is often named as Generalized Sidelobe Canceller(GSC) [9]. The
basic idea of GSC here is to generate the noise references by multi-
plying the alighted multi-channel signals with a blocking matrix, the
simplest being the averaging of subtractions of the reference from
the remaining channels. In our implementation, the subtractions are
done across the non-rejected channels. The rejected channels are
also used without subtraction. Finally, the noise references are given
by averaging across the above. An adaptive filter algorithm is used
to map the reference noises channels to the one remaining in the out-
put beamforming before subtracting the latter out. The normalized
least mean square (NLMS) is then used in the adaptive filter [9].

2.3. De-reverberation

De-reverberation has been shown to be effective for reverberant
speech in room conditions [2], but most of proposed methods rely
on the reverse modelling of room impulse responses (RIR). In con-
trast to the REVERB challenge, Chime-3 focuses on urban outdoor
environments hence RIR reversal is not suitable. We investigate a
general approach for acoustic channel equalization, particularly the
correlation shaping (CS) method proposed in [10]. The idea of CS
method is to employ an linear adaptive filter to map the autocorre-
lation function on each channel (after normal alignment) to its , that
of clean speech. The filter coefficients are updated using stochastic
gradient decent. To reduce the effects of varying vocal tract filters,
the adaptive mapping is performed on LPC residuals and some spe-
cific area of lags value is introduced. In our experiments, the CS
equalization performed better than the inverse RIR approaches [2] as
well as other dereverberation methods such as kurtosis equalization
and the spatial temporal averaging (SMERSH) [11].

3. ACOUSTIC MODELLING AND DECODING

The following subsections describe the back-end processing in the
proposed ASR system. The Kaldi toolkit is used for all experiments
[12]. The following components are detailed: (1) feature extraction
and GMM-HMM, (2) DNN acoustic modelling, (3) semi-supervised
DNN adaptation, and (4) language modelling and rescoring.

3.1. Feature Extraction and Auxiliary GMM-HMM

The feature extraction and auxiliary GMM-HMM system used is
trained using the CHiME-3 baseline script1 without modifications.
The GMM-HMM is required in an auxiliary role to provide speaker
adaptive transforms (SAT) and the initial alignments for training
the subsequent DNN system by forced alignment, which inherits
the same tied-state structure. The SAT approach uses feature-space
maximum likelihood linear regression (fMLLR) transforms, with
speech segments extracted from each conversation assumed to come
from the same speaker. For training, the fMLLR transforms are com-
puted from forced-alignments, while for testing, the fMLLR trans-
forms are computed from lattices by using 2 passes of decoding.

3.2. DNN Acoustic Modelling

The DNN acoustic model is trained with fMLLR (SAT) features
from the GMM-HMM system that are spliced ±5 frames and
rescaled to have zero mean and unit variance. The DNN has 5
hidden layers, where each hidden layer has 2k sigmoid neurons,
and has 1995 dimensions in the softmax output layer, taken from

1http://spandh.dcs.shef.ac.uk/chime_challenge/
software.html

the GMM-HMM model. The hidden layer weights are initialised
using layer-wise restricted Boltzmann machine (RBM) pretraining,
and after this fine-tuning is performed to minimize the per-frame
cross-entropy between the labels and network output. Finally, the
DNN is re-trained by sequence-discriminative training to optimise
the state minimum Bayes risk (sMBR) objective. Two rounds with
four iterations each are performed, with realignment carried out
in-between, always with a fixed learning rate of 1e-5.

3.3. Semi-supervised DNN adaptation

While the multi-conditional training helps to reduce mismatch be-
tween training and set, a semi-supervised DNN adaptation technique
is utilised, on each individual speaker separately, to further reduce
the mismatch between training and testing conditions [13, 14]. Ad-
ditional iterations of fine-tuning of the DNN requires a frame-level
label, and potentially also a confidence measure, and these are gener-
ated based on the initial output of the system after RNN rescoring, as
shown in Figure 1. The frame-level confidence cframei is extracted
from the lattice posteriors γ(i, s), which express the probability of
being in state s at time i. The decoding output gives us the best path
state sequence, si,1best, and the confidence values are the posteriors
under this sequence, as follows [14]:

cframei = γ (i, si,1best) (9)

The best path state sequence and confidence measures are then used
as the target labels and weightings respectively for additional iter-
ations of DNN fine-tuning. In our experiments, all weights in the
network are updated separately for each speaker. A learning rate
of 0.0008, which was optimized through development data, is used,
with halving performed each iteration.

3.4. Language Model and Rescoring

We utilise the language model provided by the hallenge for lattice
generation during the decoding. However, we additional train an
RNN language model using the “RNNLM-0.3e” package [15], with
20k words, 300 hidden units, 300 classes, and 2000m direct connec-
tions. The RNN language model can significantly reduce the per-
plexity, hence is used to rescore the output decoding lattice, with
interpolation weight 0.3 against uses the basic LM.

4. CHALLENGE RESULTS & DISCUSSIONS

All the discussed methods were evaluated on the development set
and the selected ones are chosen for the test evaluation. The en-
hancement methods are only applied to the test data as we found
that applying enhancement to the training data degrades perfor-
mances of the ASR systems with multi-condition training. The
results presented in Table 1 all use single channel speeches from
the official data in training. The baseline DNN-SMBR system uses
Mel-filterbank features without speaker adapive training (SAT).

4.1. Comparison of enhancement methods

It is clear that all of the enhancement methods improve upon the
baseline provided by Noisy. The only exception is MVDR which
shows a significant loss in performance in the real test set. How-
ever, its simulated test performance is the best among all the meth-
ods compared. This large discrepancy can be explained by that
the noise in the simulated signals are simply added to the rever-
berant channels hence created diffused noise field which is suitable
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Acoustic Model Enhancement Development Set Test Set
Real Sim Real Sim

Baseline
DNN-SMBR

Noisy 16.56 14.42 32.99 21.67
MVDR 22.77 8.36 53.38 11.36
CorrBF 12.29 11.43 23.58 18.11

DNN-SAT-SMBR

Noisy 12.11 10.94 22.13 13.76
MVDR 13.54 5.48 23.35 6.39

DS 8.79 8.64 16.45 14.31
CorrBF 8.45 8.24 15.66 11.79

CorrBF-GSC 9.20 8.52 - -
CS 9.83 10.52 - -

DNN-SAT-SMBR
+ SSSA

Noisy 10.55 9.40 19.74 10.66
MVDR 12.15 4.74 20.34 5.17

DS 7.37 7.33 14.20 10.97
CorrBF 7.10 7.01 13.34 9.23

CorrBF-GSC 7.68 7.11 - -
CS 8.21 8.43 - -

DNN-SAT-SMBR
+ SSSA+RNN

Noisy 9.56 8.72 18.12 9.67
MVDR 11.48 4.28 18.55 4.58

DS 6.65 6.79 13.01 10.03
CorrBF 6.52 6.38 11.46 8.55

CorrBF-GSC 7.00 6.37 - -
CS 7.54 7.68 - -

Table 1. Challenge results comparing the WER performance of
each step in the proposed system. Note: SSSA = Semi Supervised
Speaker Adaptation, RNN = Recurrent Neural Network Language
Model Rescoring. Noisy refers the original noisy utterances pro-
vided in the challenge; MVDR refers to the baseline enhanced data,
using MVDR beamforming, provided in the challenge; DS is the
simple fixed beamforming technique described in ”Delay-and-sum”;
CorrBF is the adaptive correlative beamforming; CorrBF-GSC ap-
plies adaptive noise cancellation (GSC) on top of the output of Cor-
rBF; CS refers to channel equalization using correlation shaping.

for the MVDR beamforming methods. In contrast, the noise in ur-
ban environments in 3rd CHiME Challenge is the multi-source type
which contains many directional interference components generat-
ing spikes in the covariance matrix estimation and hence may not be
suitable for MVDR beamforming methods.

The DS is among the simplest forms of beamforming possible
yet it shows a visible improvement over the baseline. It is explained
by the low distortion level in the output DS beamforming. The Cor-
rBF improves on this even further and is eventually found to be the
best enhancement method with consistent around 60% relative im-
provements on WER for all the datasets. A simple explanation is that
variations in the speakers’ head positions and the recording tablet is
better captured by the adaptive weights compared to fixed beam-
forming. It seems that applying adaptive noise cancellation (GSC)
did not improve the ASR performances, in most of cases, as ex-
pected. The reason could be the distortions introduced in the output
signals which ASR performance is especially sensitive to. The best
performance on real test data is at 11.46% WER and further im-
proved to 10.01% WER using multi-channel data in training.

The CS method, which produced cleanest output speech based
on our own listening, is still noticeably worse than the CorrBF
method. This may be due to the fact that, the reverberation effects in
CHiME-3 challenge is not significant compared to the noise effects
due to the short distance between speaker head to the tablet micro-
phones. The inverse RIR dereverberations which were successfully
applied in the Reverb challenge were more than 5% WER worse than
the CorrBF method and hence not reported in details here.

Condition Development Set Test Set
Real Simulated Real Simulated

BUS 7.45 5.55 17.89 6.43
CAF 6.61 8.11 9.43 8.54
PED 4.94 4.97 9.19 8.24
STR 7.08 6.87 9.34 11.00

Table 2. Challenge results from our best performing DNN + SSSA
+ RNN system. The WER performance of each condition is shown
for comparison with other participants.

Processing Step Dev WER Imp. Test WER Imp.

Corr. Beamforming 3% 6%
Semi-supervised DNN 1% 2%

RNN Rescoring 0.6% 1%

Table 3. Comparison of the approximate WER improvements given
by the key components of the system.

4.2. Comparison of backend system

For the back-end, the semi-supervised DNN adaptations have found
to be very useful and it can be explained by the fact that the non-
stationary noise conditions may introduce mismatch between train-
ing and testing. Furthermore,the speaker information can also be
adapted through this semi-supervised adaptation. The RNN lan-
guage rescoring which performs some kind of adaptation in language
model (LM)is also helpful for the task with the unknown domain of
speaking. These two components, together with the conventional
speaker adaptive transform and discriminative learning are essential
to deliver good performances of noisy reverberant ASR tasks.

It is worth noting that applying enhancement on the training
data, did not help to improve the ASR performances. In our exper-
iments, it consistently yields 5-7% degradation on WER. It seems
that the multi-condition training is sensitive to distortions hence the
enhanced audio could not help to improve.

4.3. Analysis of Word Error Rate Improvements

The results for our best performing system in terms of WER are sum-
marized in Table 2. A summary of the contribution of each process-
ing step to the final WER result is shown in Table 3. It can be seen
that our correlation-weighted beamforming algorithm gives the most
significant and consistent improvement in performance, which high-
lights the performance improvement gained when multiple micro-
phones are available. In addition, the semi-supervised DNN adapta-
tions and RNN language rescoring also helps to further reduce any
mismatch between training and testing conditions.

5. CONCLUSION

This paper performs comprehensive comparisons of multi-channel
approaches for distant speech recognition under urban environments
using multi-condition training which was previously proven to be
the most effective training method. The simple adaptive correlative
beamforming is found to be the most useful in front-end due to its
low level of distortion and ability to adapt the change of the head
to microphone positions. At the back-end, semi-supervised DNN
adaptation and RNN language rescoring are helpful to reduce the
mismatch between training and testing.
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