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ABSTRACT

Deep Neural Networks (DNNs) have recently become a popu-

lar technique for regression and classification problems. Their

capacity to learn high-order correlations between input and

output data proves to be very powerful for automatic speech

recognition. In this paper we investigate the use of DNNs for

automatic scream and shouted speech detection, within the

framework of surveillance systems in public transportation.

We recorded a database of sounds occurring in subway trains

in real conditions of exploitation and used DNNs to classify

the sounds into screams, shouts and other categories. We re-

port encouraging results, given the difficulty of the task, es-

pecially when a high level of surrounding noise is present.

Index Terms— scream detection, audio event detection,

transport environment, Deep Belief Networks.

1. INTRODUCTION

The automatic analysis of auditory scenes, i.e. detection and

classification of audio events or audio context, is a grow-

ing topic of research [1, 2, 3, 4, 5, 6]. For example, smart

house concepts are currently being developed, involving au-

tomatic systems for domestic events detection using audio

and video data streams [7, 8]. In humanoid robotics, an au-

dition model is also a prerequisite for natural human-robot

interaction [8, 9]. As for the detection techniques, the state

of the art is rich, with many different combinations of fea-

tures and classifiers: MFCC classified with GMM [10], with

SVM [8, 11, 12], with HMM [13], or with multiclass Ad-

aboost [14]; MFCC and other spectral features classified with

GMM [15, 1], with kNN [1], and more recently with random

forest [16]; Gabor features classified with GMM [15, 17] and

with SVM [7] ; all-pole group delay features classified with

DNN [6]; Gammatone-Wavelet features classified with SVM

[18]; spectrogram image features classified with SVM and

DNN [5], or with kNN [3].

The proposed study is part of a research project on audi-

tory scene analysis in the embedded transport environment,

for instance subway trains. This kind of context has already

lead to different studies, e.g. [19] for bus transportation, [20]

for trains, and [21] for subway. In the present paper, the

task focuses on automatic detection of screams and shouted

speech, produced in abnormal situations in the subway train:

a person in physical difficulty, a quarrel between two or more

persons, panic situations, calls for help, etc. Although such

kind of alert signals are quite specific, this task remains chal-

lenging, for several reasons. First, there exists a large variabil-

ity between “speakers”, and also between different realiza-

tions of screams and shouts, depending on the causing event,

the emotional state, etc. Second, the embedded transport en-

vironment is in general very noisy, rich, and strongly variable.

In the present case, the acoustic scene includes noise coming

from the vehicle itself (e.g., motor noise, boogie-rails fric-

tions), noise coming from the surrounding environment (e.g.,

railway traffic, station noise, loud-speaker announcements),

and noise produced by the passengers.

In order to design a realistic system, a dedicated database

was designed and recorded. This database consists of real sig-

nals recorded in the Paris metro. A metro line was booked for

the recording sessions, thanks to the Paris metro company (the

RATP) being a partner of the project. Abnormal situations

were enacted by actors, including extra participants represent-

ing a crowd. As a consequence all the recordings used in the

present study are real and not derived from synthetic signals

or simulated acoustic mixes. As for the classifiers, we used

state-of-the-art Deep Neural Networks (DNNs), for instance

a combination of Restricted Boltzman Machines (RBMs) and

Deep Belief Networks (DBNs), applied on acoustic MFCC

features. We set the task as a 4-class classification prob-

lem into screams, shouted speech, conversational speech and

noise environment.

The remaining of this paper is organized as follows: Sec-

tion 2 introduces the basic concepts of RBMs and DBNs. Sec-

tion 3 gives a detailed description of the database recording.

Section 4 reports our experiments and results. Finally Sec-

tion 5 draws some conclusions and perspectives.

2. DEEP NEURAL NETWORKS

Deep Neural Networks intend to reproduce the mechanism

with which the human brain processes information. It in-

volves a network of individuals cells, called units. The term
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“deep” owes to the fact that the cells are organized in multi-

ple layers stacked onto each other, forming a deep architec-

ture [22]. Conceptually, the units represent hidden causes or

factors to the input data. Their output represents the proba-

bility of the associated factor to have caused the occurrence

of the input data. In the present study, we use RBMs stacked

into DBNs, and turned into DNNs, as described in detail in

[23]. The main characteristics of such DNN are briefly given

below.

2.1. Restricted Boltzman Machines

RBMs are stochastic neural networks with one layer of hidden

units which have undirected connections with visible units.

The interaction between visible and hidden units is modelled

through an Energy function, which associate a scalar energy

to each configuration of visible-hidden variables, given by:

E(v, h; θ) = −
V∑

i=1

H∑

j=1

wijvihj+
1

2

V∑

i=1

bivi−
H∑

j=1

ajhj (1)

where wij are the weights between the visible vi and the hid-

den hj units, V is the number of visible units and H is the

number of hidden units, bi and hj are bias terms, and θ repre-

sents the parameters of our model. The joint distribution over

the visible units v and the hidden units h is given by:

p(v, h; θ) =
exp(−E(v, h; θ))

Z
(2)

where Z is a normalization factor. The probability over the

visible units is obtained by marginalizing out the hidden units:

p(v; θ) =
Σhexp(−e(v, h; θ))

Z
(3)

Because the hidden units are defined to be independent in the

posterior, the posterior distribution in an RBM is factorial and

can be calculated easily:

P (hj = 1 | v) =
1

1 + exp(ΣV
i=1

viwij + aj)
, (4)

Similarly, since the visible and the hidden units play a symet-

ric role in the energy function, the posterior probability can

be derived for Gaussian visible units:

p(vi = 1 | h) = N (ΣH
j=1

wijhj + bi, 1). (5)

In order to learn the parameters θ of the model, we adopt the

greedy learning method proposed in [24] where the layers of

the network are learned one by one, freezing the weights of

all the layers that have already been learned.

2.2. Deep Belief Networks

DBNs are composed of stacked RBMs which learn in turn

different levels of correlation between the input data. The

first RBM learns a hidden representation of the data, and each

RBM after that one takes the hidden layer of the previous one

and learns a hidden representation of it. In the end, the deeper

layers represent more abstract concepts, or features, associ-

ated with the input data.

2.3. Discriminative fine-tuning

Our goal is to classify sounds in order to detect screams and

shouts, which means we need to create a model that performs

well at classifying. Therefore, one solution is to turn our

DBN, after we have learn its parameters, into a DNN. Be-

cause DNNs are discriminative classifiers, they learn to model

the frontier between classes, through a discriminative rule

based on gradient descent and error propagation. The most

common algorithm used in DNN training is called the “back-

propagation” algorithm introduced in [25]. Practically, a last

layer of N sigmoid units is added to perform the calculation

of the probability for the input to belong to a class, N being

the number of classes we want to classify. Then we feed our

generatively initialized network with labelled data, and use

the back-propagation algorithm to minimize the classification

error.

3. DATABASE RECORDING

Our study addresses a specific detection task in a specific

environment, thus we collected audio data recorded directly

in that environment. Within the framework of the research

project DéGIV [21], a subway train from the automatic line

14 of the Paris metropolitan was reserved for the recording

sessions. We did several sessions between 10am and 4pm

while the train was running its usual course, among other

trains from the same subway line, running between different

stations and stopping at all of them. For security matters, the

train did not allow any regular passengers in, and 3 sets of

actors played several pre-defined scenarios displaying a situ-

ation of security matter (robbery, assault, fight). Numerous

extra actors simulated regular passengers. For data recording,

2 microphones were placed on the ceiling about 10cm from

one another, along with a video camera. Different settings

were defined in which each scenario was played. Each scene

was played in 2 different zones which were defined accord-

ing to their distance to the microphone: close-distance (1m to

1.5m) and far-distance (3m to 4m). 2 crowd densities were

used: heavy density (between 12 and 17 people involved in

the scene) and low density (between 5 and 7 people). Ev-

ery alert scenario was repeated for each combination of set-

tings. A large amount of sequences of chatter among passen-

gers were captured. Scenes were captured while the train was

either accelerating, moving at stationary high speed, or brak-

ing, and when it was stopped at a station. Sequences of door

openings and closings were captured as well. Therefore our

database contains all the noises induced by the train activity
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(door opening, brakes compressor draining air, doors closing

signal, etc.), and is very noisy. For example the level of the

noise created by the air flow inside the tunnel is comparable

to the level of a loud conversation. To display this, we cal-

culated signal power ratios. We observed a typical level dif-

ference between sequences with shouts and sequences with-

out shouts (noise only) of about 8dB when the train was in

full motion, and about 62dB when it was stopped. The noise

level difference between those two conditions is thus about

54dB. In such a noisy environment any type of classification

is difficult to perform. Finally, we believe that the recorded

database exhibits a realistic diversity of signal occurrences

for the considered application (different scenarios, different

source to microphone positions, different noises, etc.).

4. EXPERIMENTS

4.1. Data

The data was manually cross-labelled by two different per-

sons (i.e. the first person labelled the entire set and the second

did a verification-labelling) distinguishing between 4 differ-

ent categories of sound:

• Scream: very loud (and often high-pitched) vocaliza-

tions, with no lexical content;

• Shout: loud speech signal occurring in security alert

situations (fight, assault, accident, etc);

• Conversation: speech signals from normal conversation

between people;

• Noise: all noises related to the train and its motion (bell

ringing, brakes squeaking, etc), without speech content.

It is important to note that the Conversation, Scream and

Shout classes can contain a lot of noise. The difference be-

tween these classes and the Noise class is thus the absence

of speech/vocal signals for the latter, besides that the back-

ground is often similar.

We split our database in two different sets: a training-

validation set and a test set. All following scores are calcu-

lated on the test set. At the time we ran the experiments, the

training set was composed of 33s of class Scream, 292s of

Shout, 997s of Conversation and 1429s of Noise. The test set

was composed of 17s of class Scream, 92s of Shout, 207s of

Conversation and 396s of Noise. One could observe that our

dataset displays a fairly high disproportion between classes;

Scream and Shout are quite under-represented compared to

other classes. Such a large difference in the number of data

points of each class in the learning dataset is a known is-

sue in the machine learning literature where it is referred to

as class imbalance. However our situation is a very specific

case scenario, wherein the classes are naturally imbalanced.

In fact, Scream and Shout occurrences are even more imbal-

anced (under-represented) in real life than in our dataset. We

haven’t conducted experiments to address this problem ex-

tensively in our study. Simply, we purposely decided to cre-

ate a dataset with more occurrences of the rare classes (Shout

and Scream) than would be found in a real environment in

order to improve the modeling abilities of our system. In-

deed, the more occurrences the more accurate the modeling.

In short, we tried to find a trade-off between (limiting the)

over-representation of Shout and Scream in our dataset w.r.t.

reality, and (limiting) their under-representation w.r.t. other

classes. Since Neural Networks do not embed information

about the frequency of occurrence of classes in the learning

dataset as HMMs would do for instance through the prior

probability of each class, we believe that having such con-

troled unrealistic amount of data points for one class does not

affect much the recognition process.

4.2. Features

We used 12-th order MFCC coefficients plus an energy term.

The MFCC coefficients were calculated every 10ms with a

25ms window. To account for the temporality of the data, we

concatenated every 10 consecutive frames of MFCC + energy

vectors to form an input vector to our network, It should be

noted that only the left channel from the stereo recordings was

used to calculate the features and process classification.

4.3. Classifier

We used the Python machine learning library ‘pdnn’ [26]

which is itself based on the ‘theano’ framework [27], to im-

plement our DBN-DNN networks. This library allows one

to learn the parameters of a DBN on a dataset, then turn this

DBN into a DNN to discriminatively fine-tune those param-

eters, as briefly described in Section 2. The DNN is trained

discriminatively with the same data used to train the DBN.

We ran experiments with a network of three 512-unit layers,

with 300 epochs for the DBN and 200 for the DNN, which

is the configuration that yielded the best classification results

on our data. The number of epoch was chosen after running

multiple tests while increasing it, stopping when the delta on

the validation error was close to zero.

4.4. Tests configuration

Preliminary tests have revealed that screams are easier to de-

tect than shouts. Our main goal being to detect situations of

danger, we thus first report classification between two classes:

one comprised of the union of Scream and Shout, represent-

ing abnormal situations, and the other comprised of the union

of two other categories (Conversation and Noise), represent-

ing normal situations. Then, to challenge our model, we run

classification between Shout and Noise (still considering that

screams are easier to detect than shouts). Finally, we report

the results for a 3-class run, Shout vs. Conversation vs. Noise.

6462



Everything else Shout+ Scream

Everything else 97.0 17.8

Shout+ Scream 3.00 82.2

Table 1. Confusion Matrix. Shout+Scream vs. Everyth. else.

Noise Shout

Noise 96.8 20.8

Shout 3.20 79.2

Table 2. Confusion Matrix. Noise vs. Shout.

4.5. Results

The results for the recognition of Scream and Shout vs. all

other categories were quite good: we achieved an error rate

of 6.2% (see the confusion matrix in Table 1). This error

rate takes into account all errors made during the classifica-

tion process, that is, every data which was classified as some-

thing else than its label counts as an error, and it also takes

into account the difference of cardinal of occurrences across

classes. For the case Shout vs. Noise, we achieved an er-

ror rate of 6.5%, with proper detection of Noise as high as

96.8% and proper detection of Shout of 79.2% (see the con-

fusion matrix in Table 2). Even though they seem to be harder

to detect than screams, shouts are quite well discriminated in

noise. Assuming that Shout occurrences are more similar to

other classes such as Conversation than Scream occurrences,

we decided to see how it would compare against it. For the

3-class Shout-Conversation-Noise problem, we obtained an

error rate of 28.7%, (see the confusion matrix in Table 3. We

notice that 21.6% of Conversation occurrences are classified

as Noise, and 34.8% of Shout occurrences are classified as

Conversation. This can be explained by two different reasons.

First, about one third to one half of the occurrences in our

dataset contain a quite high level of noise, which makes the

classes distribution overlap in the feature space. Also, some

of our data are mixed: some occurrences can contain both

shouts and conversation. The difference between the Shout

and Conversation classes actually lies on a conceptual level,

and is sometimes difficult to tell even for a Human expert,

which can explain why those two classes are relatively con-

fused by our classifier.

5. CONCLUSION AND PERSPECTIVES

As mentioned just above, one of the main problems in the

present application is that our data is mixed. It contains oc-

currences belonging to different classes at the same time. This

could be seen as a source separation problem. Therefore in-

tegrating some sort of pre-processing source separation algo-

rithm could be helpful. Our next steps may include increasing

the number of features in a way that can help our network in

its classification task. Then we should further improve the

Noise Conversation Shout

Noise 77.0 21.6 7.20

Conversation 19.5 66.1 34.8

Shout 3.50 12.3 58.0

Table 3. Confusion Matrix. Noise vs. Conversation vs.

Shout.

way temporal structure of the data is dealt with in our model.

One idea is to interface Hidden Markov Models (HMMs) with

our neural networks. Finally, we will try to increase the num-

ber of classes to detect a larger and more specific set of events

(siren, doors closing, etc.)
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