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ABSTRACT

This contribution investigates the use of features derived

from a Gabor filterbank (GFB) for the application of acoustic

cough classification. Gabor filters are two-dimensional filters

that decompose the spectro-temporal power density further

into components which capture spectral, temporal and joint

spectro-temporal modulation patterns.

The proposed GFB feature extraction scheme in com-

bination with Gaussian mixture model (GMM) and hidden

Markov model (HMM) classifier back-ends is evaluated using

a cough database recorded by a phone hotline. The database

is composed of two kind of coughs, i.e., dry and produc-

tive cough, and other sounds, e.g. speech. Based on these

data, we show that GFB features result in better recognition

performance than the common Mel-frequency cepstral coeffi-

cient (MFCC) baseline for the given task of cough classifica-

tion. Furthermore, results indicate that GMMs are preferable

to HMMs for this kind of data.

Index Terms— cough classification, acoustic event clas-

sification, spectro-temporal filters, Gabor filterbank

1. INTRODUCTION

Cough is a reflex to clear the respiratory tracts from mucus

and foreign particles. An increased number of coughs is usu-

ally an indicator of a respiratory disease, e.g., a cold, influenza

etc. During a cold, two types of cough are common: produc-

tive and dry cough. An infection in the bronchia results in

an increased production of viscous mucus that cannot be re-

moved by the usual ways. Instead, it has to be coughed up re-

sulting in sputum. Therefore, this process is called productive

cough. Commonly, periods of productive cough are preceded

by periods of dry cough. This kind of cough is commonly

caused by a defense mechanism to a virus attacking mucous

membranes. Messengers are emitted that stimulate sensitive

nerve fibers. Though no mucus or intrusive substances have
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to be removed from the respiratory system, a coughing re-

flex is provoked. Thus, dry cough has no functionality and

by its violent character can even harm the affected mucous

membranes further. Hence, an automatic surveillance system

that automatically detects and classifies productive and dry

coughs, which is proposed in this contribution, can be benefi-

cial for monitoring the health state of patients in hospitals as

well as in in-home care.

Several proposals for acoustic event detection (AED) sys-

tems implicitly recognize cough amongst other events [1–

4]. Other publications explicitly focus on acoustic cough

classification. In [5], hidden Markov models (HMMs) and

Mel-frequency cepstral coefficients (MFCCs) are proposed

for cough detection. In [6], several low-level features and

different feature-selection algorithms were tested for cough

detection. Even for non-human coughs, automatic detectors

were examined [7].

The acoustic characteristics of productive and non-

productive coughs was analyzed in [8]. Three temporal

phases for coughs were identified. The second phase of pro-

ductive and dry cough differentiates by its spectral and tem-

poral compositions. Thus, we propose the use of spectro-

temporal Gabor filterbank (GFB) features for classification of

dry and productive coughs. Gabor filters are two-dimensional

spectro-temporal filters. Hence, they are capable of detect-

ing temporal and spectral changes at the feature level jointly

in contrast to, e.g., frame-based features like MFCCs. They

have been proposed as a mathematical description of spectro-

temporal receptive field (STRF) in the auditory processing

stages of animals [9–12]. Their use for acoustic feature ex-

traction has been proposed by [13] and [14] in the context

of robust automatic speech recognition (ASR). Recently, the

features have been applied to AED tasks in [3, 15, 16], result-

ing in performance increases compared to a MFCC baseline.

Other, related methods exploiting two-dimensional (spectro-

temporal) context for AED are based on, e.g., spectrogram

images [17], stabilized auditory images [18], part-based mod-

els [19] or non-negative matrix factorization (NMF) [20, 21].

However, these approaches will not be examined in this con-
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tribution.

In the present study, GFB features are used to classify

dry and productive coughs and in discrimination against other

sounds. We use GFB parameters that have been adopted in

[16] for the AED task. For training and testing, real data

has been collected by volunteers via a phone hotline. The

results will be compared to common MFCC features. Per-

formance difference using Gaussian mixture models (GMMs)

and HMMs is investigated.

2. GABOR FILTERBANK

Gabor filters are two-dimensional patterns that are supposed

to copy receptive fields of neurons. The GFB employed here

is composed of a set of two-dimensional Gabor filters, each

defined by its specific temporal and spectral envelope func-

tions and by its temporal and spectral carrier functions, re-

spectively. The Gabor filter as a function of frequency index

m and frame index ℓ, with carrier frequency m0 and temporal

frame position ℓ0, spectral and temporal modulation frequen-

cies ωm and ωℓ and the numbers of semi-cycles under the

envelope νm and νℓ, respectively, is, thus, defined as

γ (m, ℓ;m0, ℓ0, ωm, ωℓ, νm, νℓ)

= sωm
(m−m0) · sωℓ

(ℓ− ℓ0)

· hπνm

ωm

(m−m0) · hπν
ℓ

ω
ℓ

(ℓ− ℓ0) , (1)

with carrier function

sωx
(x) = exp (jωxx) , (2)

and envelope function

hb (x) =

{

0.5 + 0.5 cos
(

2πx
b

)

, − b
2
< x < − b

2
,

0, otherwise,
(3)

where b denotes the filter width. An example of a two-

dimensional Gabor filter is depicted in the central pattern of

Fig. 2.

The filterbank is designed to cover the spectro-temporal

modulation domain approximately uniformly. The spectral

and temporal modulation center-frequencies ω1
m, . . . , ωNm

m

and ω1
ℓ , . . . , ω

Nℓ

ℓ , with Nm and Nℓ representing the respec-

tive number of of center frequencies, are defined recursively

according to

ωi+1
m = ωi

m

1 + cm
2

1− cm
2

with cm = dm
8

νm
(4)

and

ωi+1

ℓ = ωi
ℓ

1 + cℓ
2

1− cℓ
2

with cℓ = dℓ
8

νℓ
(5)

with properly chosen lower and upper limits ωmin
m , ωmax

m , ωmin
ℓ

and ωmax
ℓ . Parameters dm and dℓ define the relative distances
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Fig. 1. Block diagram of GFB feature extraction. The in-

put signal is transformed to a logarithmically scaled Mel-

spectrogram and decomposed by two-dimensional Gabor fil-

ters, yielding high-dimensional GFB features. The dimen-

sionality of the real parts of these features is reduced by a

filter function that preserves the most informative feature di-

mensions while decreasing the number of features for classi-

fication.

of adjacent filters where smaller values correspond to larger

filter overlaps.

While purely spectral filters (ωℓ = 0) are sensitive to

spectral patterns like tonal components, purely temporal fil-

ters (ωm = 0) are sensitive to broad-band onsets. Spectro-

temporal filters (ωℓ > 0 and ωm 6= 0), in contrast, produce

highest output when the corresponding joint spectral and tem-

poral transient is observed in the signal. The optimal param-

eter set for the GFB for the task of acoustic event classifica-

tion (AEC) has been investigated in [16].

3. FEATURE EXTRACTION

For classification, features are extracted based on the log-

scaled Mel-spectrogram Yℓ,k of the signal y(n) with k and n
denoting the Mel-band and discrete time index, respectively.

The complex-valued Gabor filterbank is applied to the log-

scaled Mel-spectrogramYℓ,m and the output’s real part is used

for classification, i.e.,

Gℓ,m (m0, ℓ0, ωm, ωℓ, νm, νℓ)

= ℜ







∑

µ,λ

Yλ,µγ (µ+m,λ+ ℓ;m0, ℓ0, ωm, ωℓ, νm, νℓ)







,

(6)

Applying the GFB to all Mel-bands results in a high-

dimensional feature representation, e.g., a Mel-spectrogram

with 23 Mel-bands and a GFB with 50 filters result in 1150-

dimensional features. Therefore, only Mel-bands that are

shifted about 1/4 of the Gabor filter spectral width and, thus,

include substantial new information, are used (cf. Fig. 2).

Hereby, feature dimensionality is reduced by a factor of about

1/3 from 1150 to 380 dimensions. For more details cf. [16].

The procedure of GFB feature extraction is depicted in Fig. 1.
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Fig. 2. Illustration of the generation of GFB features (right

pattern) from a Mel-spectrogram (left pattern) of a dry cough

by a single Gabor filter (central pattern) of the filterbank. Di-

mension reduction is achieved by applying the filter to a sub-

set of central Mel-bands (here: five) that are shifted about 1/4
of the Gabor filter spectral band width b. (Temporal shifts of

the dashed boxes indicating filter positions are just for visual-

ization.)

4. EXPERIMENTAL DATA AND SETUP

Since productive cough is hardly producible without being

sick, acoustic cough data were collected via a public tele-

phone hotline to gain a sufficient amount of events. Vol-

unteers could call the hotline to check their cough type by

coughing into the receiver. Thus, a realistic database with

many different participants in various acoustic environments

could be gained. The data were recorded at a sampling fre-

quency of fs = 8 kHz and labeled by two human annotators.

The annotators labeled each call with one label according to

productive cough, dry cough and other sounds grouped as

garbage and with leading and tailing silences. The garbage

class consists of speech (mostly), laughing, music etc. The

annotators had the possibility to indicate whether they were

sure or unsure with a label. While garbage was labeled iden-

tically by both annotators, the consent for dry and productive

cough (independent whether sure or not) was only 56.6%. To

get reliable ground truth annotations for the following eval-

uation, only the data that were labeled “sure” and that were

labeled consistently between both annotators have been pro-

cessed. This data set comprises 46 minutes of recordings.

Details are given in Table 1.

For classification performance evaluation, the data are di-

vided into five disjoint sets with equal number of events per

class. These five sets are used to perform a five-fold cross-

validation. Pause, i.e. segments of silence, and the garbage

class are modeled by GMMs, i.e., one emitting HMM state,

since they exhibit no temporal structure. In a first experiment,

dry and productive cough classes are modeled by GMMs as

well. In a second experiment, left-to-right HMMs [22] with

three emitting states are adopted to cover the beginning, the

middle and the final phase of dry and productive cough ac-

Table 1. Number of events and average duration (mean and

standard deviation) per class.

number events av. duration [s]

dry cough 228 4.09± 2.20
productive cough 124 4.36± 2.25
garbage 162 4.83± 2.63

Table 2. Parameters for the GFB for the task of AED applied

for feature generation (cf. [16]).

dm dℓ νm νℓ ωmin
m ωmin

ℓ ωmax
m ωmax

ℓ

0.3 0.2 3.5 3.5 0.18 0.22 π/2 π/2

cording to the results from [8].

State observations are modeled by mixtures of diagonal

Gaussians. The optimal number of Gaussian mixture compo-

nents is estimated by averaging the accuracies of all folds and

selecting the mixture number with highest accuracy. Clas-

sification is done by Viterbi decoding [22]. The grammar

allows for pause-event-pause states, only. The recognition

rate of pause will not be considered in the presented results.

Results will be given as mean accuracies of all five cross-

validation trials for the optimal number of Gaussian mixture

components.

Since the sampling frequency is fs = 8 kHz, a Mel-

filterbank with 23 filters is used for feature extraction. The

window size is 25 ms and the hop size 10 ms. For the GFB

features, the optimal parameters for the GFB proposed in [16]

for the task of AEC are applied. The parameters are given in

Table 2. The dimensionality of the GFB features is 380.

For comparison, standard MFCC features are evaluated

as baseline. The MFCCs are based on the same Mel-

spectrogram decomposition parameters as the GFB features.

A pre-emphasis filter is applied to the time-domain signal that

reduces low frequency noise components [22]. The first 12

MFCC coefficients and the zeroth coefficient are used. Ad-

ditionally, derivatives of first (∆) and second (∆∆) order are

concatenated with the MFCCs to capture temporal dynamics.

Thus, they comprise a dimensionality of 39 features.

5. RESULTS

For evaluation of cough classification, two experiments are

conducted. In the first experiment, all classes (pause,

garbage, dry cough, productive cough) are modeled by

GMMs. In the second experiment, three-states HMMs are

used to model the classes dry cough and productive cough ac-

cording to the three cough phases identified by [8]. MFCCs

and GFB features are tested with these model types.

The accuracies as mean and standard deviation of the

cross-validation trials are depicted in Fig. 3. In the left panel,
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Fig. 3. Accuracies for classification plotted in terms of mean

and standard deviation of the five cross-validation trials. In

the left panel, accuracies for distinction between garbage and

cough in general are depicted, i.e., confusion of dry and pro-

ductive cough are not considered as mistakes. In the right

panel, accuracies for classification of dry cough, produc-

tive cough and garbage are depicted. Evaluation is based

on MFCC (dark grey) and GFB features (light grey) using

GMMs for all classes (left side of each panel) and three-states

HMMs for models dry and productive cough (right side of

each panel).

 

 

GFB/GMM

MFCC/GMM

number mixtures

ac
cu

ra
cy

1 2 4 8 16 32 64 128 256

0.6

0.65

0.7

0.75

0.8

0.85

Fig. 4. Mean accuracies and standard deviations (whiskers)

from the five-fold cross-validation over the number of mix-

tures. GMMs are applied based on MFCC (solid) and GFB

features (dashed) for classification of dry cough, productive

cough and garbage. Maxima are indicated by circles. (Note

that the x-scale is logarithmic.)

the mean accuracies and standard deviations of the five-fold

cross-validation for distinction of garbage and cough in gen-

eral are shown, i.e., classification results of dry and productive

cough are merged and confusions between these two classes

are not counted as mistakes. In the right panel, mean accu-

racies for classification of all three classes are presented, i.e.,

garbage, dry cough and productive cough are considered as

separated, independent classes.

Apparently, GFB features yield higher accuracies for

cough classification than MFCCs, irrespectively of the type

of modeling. This gain by using GFB features over MFCCs

is not an effect of random accuracy maxima originating from

model parameterization during cross-validation as can be seen

in Fig. 4. Instead, for every tested number of mixtures GFB

 

 

0.30

0.02

0.00

0.53

0.02

0.18

0.06

0.43

0.11

0.03

0.49

0.15

0.08

0.04

0.56

0.06

0.02

0.37

0.08

0.06

0.03

0.51

0.10

0.03

0.43

0.12

0.06

0.08

predicted class

ac
tu

al
cl

as
s

0.93

0.98

0.85

0.82

0.91

0.91

0.83

0.85

(d) GFB/HMM(c) MFCC/HMM

(b) GFB/GMM(a) MFCC/GMM

gar. dry pro.gar. dry pro.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gar.

dry

pro.

gar.

dry

pro.

Fig. 5. Confusion matrices using MFCCs (panels (a) and (c))

and GFB features (panels (b) and (d)) for dry cough, pro-

ductive cough and other sounds (garbage). In panels (a)

and (b), every class is modeled by GMMs whereas in pan-

els (c) and (d), classes dry cough and productive cough are

modeled by three-states HMMs. Rows indicate the actual hu-

man labeled classes, columns the classifiers’ predictions.

features yield better performance.

If merely discrimination of cough against other sounds is

performed (cf. Fig. 3, left panel), hardly any differences in

accuracy based on GMMs or HMMs are noticeable for each

tested feature type. If dry and productive coughs are supposed

to be differentiated as well, a benefit is achieved by applying

GMMs (cf. Fig. 3, right panel). Though the correct recogni-

tion rate of garbage and dry cough increases by using HMMs

in combination with GFB features, the accuracy for produc-

tive cough degrades in comparison to the usage of GMMs

whereas confusions with dry cough and garbage increase as

can bee seen in the confusion matrices depicted in Fig. 5.

6. CONCLUSION

In this contribution, cough classification with differentia-

tion of productive and dry cough is conducted. GMMs and

HMMs were tested as back-end classifiers in combination

with MFCCs and GFB features.

We showed that for both back-end classifiers, GFB fea-

tures yield higher accuracies than MFCCs, independent of

the model parameterization. Furthermore, we demonstrated

that GMMs yield higher accuracies than three-states HMMs if

modeling dry and productive cough. This might be due to the

annotations that do not distinguish between single coughs and

cough series. In this case, an unstructured GMM seems bene-

ficial over an HMM that explicitly attempts to model temporal

configurations.

Hence, the accuracy for discrimination of garbage and

cough based on GFB features in combination with GMMs

is considerably high. However, distinction between dry and

productive cough is still moderate.
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