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ABSTRACT
In this paper we study the persistent homology of sliding win-
dow embeddings of quasi-periodic signals. That is, functions
which are sums of harmonics with different periods, and in
particular, those having incommensurate frequencies. The re-
sulting sliding window point-clouds, in this case, are (dense
in) high-dimensional tori. We prove theorems which guide
the choice of window size and embedding dimension, and de-
scribe the associated persistent homology.

Index Terms— Sliding window, delay embedding, in-
commensurate frequencies, persistent homology

1. INTRODUCTION

Time series are ubiquitous, so naturally their analysis is a fun-
damental object of study. To this end, many methods have
been developed: Spectral representations, such as the Dis-
crete Fourier and Wavelet transforms, have been successfully
applied for many years to several problems. There are, how-
ever, instances where the spectrum is only part of the story
and it is paramount to characterise the underlying dynamics.

Sliding window (or time-delay) embeddings yield – in
generic conditions – a diffeomorphic reconstruction of the un-
derlying state space [1]. The shape of these reconstructions
often carries vital information regarding the structure of at-
tractors (e.g. points vs. cycles) and their dimension, as well
as that of connecting regions. The main point of this paper
and other recent work, is that the shape of sliding window
embeddings can be measured and leveraged for applications.

Indeed, given a collection of points (i.e. a point-cloud) in
Euclidean space, Persistent Homology (a fundamental tool in
topological data analysis) measures the number and nature of
the holes of a geometric object approximating the cloud. Re-
cently, the combination of sliding window embeddings and
persistent homology has seen several applications. These in-
clude analysis of recurrent systems [2], identification of copy
number aberrations in breast cancer [3], periodicity quantifi-
cation in gene expression time series data [4], stability quan-
tification in turning systems [5] and wheeze detection [6].

Understanding what it is that persistent homology of slid-
ing window embeddings captures was a key element in the
success of these approaches. Of particular relevance was the
theoretical analysis for periodic functions undertaken in [7].
There, it was shown that periodicity was best captured in the
sliding window embedding when: the embedding dimension
is at least the number of dominant harmonics, and the win-
dow size approximates the function’s period. In addition, it
was shown that the salient features in the 1-dim persistence
diagram are controlled by the function’s Fourier coefficients.

Here we extend the results of [7] to functions which are
sums of harmonics with incommensurate frequencies. These
signals will not be periodic, but quasi-periodic, in that their
sliding window embeddings are dense in high-dimensional
tori. Quasi-periodicity appears naturally, for instance, in
biphonation phenomena in mammals [8], as well as in the
transition to chaos in rotating fluids [9]. We will prove theo-
rems which guide the choice of time-delay and window size
(Theorems 2.1 and 2.2), and also provide explicit bounds on
the persistence homology for all dimensions (Theorem 2.8).
While defining persistent homology (for the Rips filtration
and coefficients on a field F) is out of the scope of this paper,
we refer the reader to [10] for a terse introduction.

2. MAIN RESULTS

We are interested in functions f : R ÝÑ C of the form

fptq �
Ņ

n�0

cne
iωnt

where N P N , the cn are non-zero complex numbers and the
ωn are incommensurate positive real numbers. This means
that 1, ω0, . . . , ωN are linearly independent over Q. If 1 de-
notes transpose, M P N and τ ¡ 0, then

SWM,τfptq �
�
fptq, fpt� τq, . . . , fpt�Mτq

	1
P CM�1

is the sliding window embedding of f at t, with embedding
dimension M � 1, delay τ and window size Mτ .
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Let xf ptq � pc0eiω0t, . . . , cNe
iωN tq1, and for c P C let

S1
c � tz P C : |z| � |c|u. It follows from Kronecker’s

theorem [11] that the set Xf �
 
xf pkq : k P Z

(
is dense in

the pN � 1q-torus TN�1 � S1
c0 � � � ��S1

cN . Moreover, if we
let Ωf be the pM � 1q-by-pN � 1q matrix

Ωf rm� 1, n� 1s � eiωnmτ , 0 ¤ m ¤M, 0 ¤ n ¤ N

then the equality SWM,τfptq � Ωf � xf ptq (� denotes matrix
multiplication) implies that

 
SWM,τfpkq : k P Z

(
will be

dense in an pN�1q-torus whenever rankpΩf q � N�1. The
following theorem clarifies exactly when this happens.

Theorem 2.1. If 0   τ   2π
max
n

tωnu then Ωf is full-rank. If in

addition M ¥ N , then the sliding window point cloud

SWM,τf �
 
SWM,τfpkq : k P Z

(
is dense in a space homeomorphic to TN�1.

Proof. Let L � mintM,Nu and let A be the upper-left pL�
1q-by-pL�1q block of Ωf . Assume, by way of contradiction,
that detpAq � 0. Since in this case the rows of A are linearly
dependent, there are ρ0, . . . , ρL P C not all zero for which

Ļ

`�0

ρ`e
iωn`τ � 0 , n � 0, . . . , L.

In other words, each ζn � eiωnτ is a root of the non-zero
polynomial ppzq � ρ0 � ρ1z � � � � � ρLz

L. Moreover, given
that the ωnτ are distinct and satisfy 0   ωnτ   2π, then
ζ0, . . . , ζL are distinct. It follows from the fundamental theo-
rem of algebra that L� 1 ¤ deg

�
ppzq� ¤ L, which is a con-

tradiction. Thus A is invertible and rankpΩf q � L� 1.

In the transition from Xf to SWM,τf the toroidal geom-
etry of Xf will be minimally perturbed when the columns of
Ωf are mutually perpendicular. If : denotes conjugate trans-
pose, then the relevant inner products are the off-diagonal en-
tries of Ω:

f �Ωf . Explicitly, Ω:
f �Ωf is the pN�1q-by-pN�1q

matrix with diagonal terms equal to M � 1, and off-diagonal
entries�

Ω:
f � Ωf

�rk � 1, l � 1s � 1 � eipM�1qτpωl�ωkq

1 � eiτpωl�ωkq

One way of maximizing mutual perpendicularity is making
each term pM�1qτpωl�ωkq as close as possible to an integer
multiple of 2π. It is important to note that this can be done
simultaneously and with arbitrary accuracy, by the Dirichlet
approximation theorem [12], but requires loosing control of
the embedding dimension in order to maintain τ   2π

max
n

ωn
.

Instead, given M P N, we will choose 0   τ   2π
max
n

tωnu
and integers nk,l which minimize

¸
0¤k l¤N

�
pM � 1qτpωk � ωlq � 2πnk,l

�2

(1)

Indeed, let ω and η be the column vectors of dimension
NpN � 1q{2 whose coordinates are the differences pωk�ωlq
and the integers nk,l, respectively, for 0 ¤ k   l ¤ N . A
calculus argument shows that for each η P ZNpN�1q{2 and
M P N, the choice of τ which minimizes equation (1) is

τ �
2π

°
k l

pωk � ωlqnk,l
pM � 1q °

k l
pωk � ωlq2 � 2πxη, ωy

pM � 1q}ω}2 (2)

As far as guaranteing 0   τ   2π
max
n

tωnu , the Cauchy-

Schwartz inequality implies that one should require

0   }η}   pM � 1q}ω}
max
n
tωnu

Plugging in the value for τ from (2) into (1), and rewriting
(1) in terms of ω and η, it follows that (1) is equivalent to

4π2

����η � xη, ωy
}ω}2 ω

����2

(3)

which is nothing but (4π2 times) the square distance from η
to the line spanned by ω. This analysis proves the following:

Theorem 2.2. Let M P N, and let ω be the vector of differ-
ences pωk � ωlq, 0 ¤ k   l ¤ N . If η is the element in#

n P ZNpN�1q{2 : 0   }n}   pM � 1q}ω}
max
n
tωnu

+

which is closest to the line spanned by ω, then τ � 2πxη,ωy
pM�1q}ω}2

satisfies 0   τ   2π
max
n

tωnu and pτ, ηq minimizes (1).

Now that we have settled on how to choose the parameters
for the sliding window point-cloud, let us determine explicit
bounds for its persistent homology. We begin with a technical
result motivating the types of comparisons we will make. For
ε ¡ 0 let rkε

�
dgm

�
be the number of elements in the multi-

set tpµ, νq P dgm : µ � 0 and ν ¡ εu.
Lemma 2.3. Let K � tKεuε¡0 and K1 � tK 1

εuε¡0 be
filtered simplicial complexes, and let Vε � HdpKε;Fq and
V 1
ε � HdpK 1

ε;Fq be their d-dimensional homology with coef-
ficients in a field F. Let γ, θ ¡ 0 be so that γθ ¥ 1. If there
exist linear maps φ : Vε ÝÑ V 1

θε and ϕ : V 1
ε ÝÑ Vγε so that

Vε{θ Vγε

V 1
ε V 1

γθε

φ φ
ϕ

is a commutative diagram for every ε ¡ 0, then

rkε{θ
�
dgmdpKq� ¥ rkε

�
dgmdpK1q� ¥ rkγε

�
dgmdpKq�
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Proof. Since it is enough to check one inequality let us see
that rkε{θ

�
dgmdpKq� ¥ rkε

�
dgmdpK1q�, and to that end

let k � rkε
�
dgmdpK1q�. Then there is δ ¡ ε and exactly

k independent classes z1, . . . , zk P V 1
δ with zero birth-time

and death-time greater than δ. It follows that there are classesrz1, . . . , rzk P V 1
δ{pγθq with zero birth-time, so that rzj is mapped

to zj through the homomorphism induced by K 1
δ{pγθq ãÑ K 1

δ .
By commutativity of the diagram and since z1, . . . , zk repre-
sent distinct bars in dgmdpK1q, then ϕprz1q, . . . , ϕprzkq P Vδ{θ
represent k distinct bars in dgmdpKqwith zero birth-time and
death-time greater than δ{θ ¡ ε{θ.

We now set the stage to apply Lemma 2.3. Since Ω:
f � Ωf

is a Hermitian positive-semi-definite matrix, it follows that its
eigenvalues are real and non-negative. Moreover:

Proposition 2.4. Let λmax and λmin be the maximum and
minimum eigenvalues of Ω:

f � Ωf , respectively. Thena
λmin}z} ¤ }Ωf � z} ¤

a
λmax}z} , z P CN�1

For ε ¡ 0 and X � CN�1 let RεpXq be the simplicial
complex whose simplices are the non-empty finite subsets of
X with diameter less than ε. RεpXq is called the Rips com-
plex at scale ε, and it satisfies RεpXq � Rε1pXq whenever
ε ¤ ε1.That is, tRεpXquε¡0 is a filtered simplicial complex.
The bound from Proposition 2.4 can now be used to relate
the persistent homology of the Rips filtration tRεpXf quε¡0 to
that of tRεpSWM,τfquε¡0:

Proposition 2.5. Let M ¥ N and let 0   τ   2π
max
n

tωnu .

Then Ω�1
f (as a linear transformation) exists on SWM,τf ,

and Ωf and Ω�1
f induce simplicial maps making the diagram

Rε{?λmax
pXf q Rε{?λmin

pXf q

RεpSWM,τfq R
ε
b
λmax
λmin

pSWM,τfq
Ωf Ωf

Ω�1
f

commute for every ε ¡ 0.

Proof. Theorem 2.1 implies that Ω�1
f exists on SWM,τf . For

ε ¡ 0 the right hand side inequality in Proposition 2.4 implies
that if rx0, . . . ,xds is a d-simplex in Rε{?λmax

pXf q, then
rΩfx0, . . . ,Ωfxds is a d-simplex in RεpSWM,τ q. A similar
argument applies to Ω�1

f and we obtain the result.

We will now study the persistence of tRεpXf quε¡0, which
will be combined with Proposition 2.5 to describe the persis-
tent homology of tRεpSWM,τfquε¡0. We begin by letting
n � 0, . . . , N and considering the projection map

pn : Xf ÝÑ S1
cn

xf pkq ÞÑ cne
iωnk

where S1
cn � tcneiωnk : k P Zu. Since pn is distance non-

increasing, it follows that it extends to a simplicial map

pn : RεpXf q ÝÑ RεpS1
cnq

Using cartesian products of ordered simplicial complexes [13]

the pn’s can be combined into p : RεpXf q ÝÑ
N�
n�0

RεpS1
cnq.

The partial order   on the vertices of RεpS1
cnq is defined

by the rule cneiωnk   cne
iωnk

1

if and only if k ¤ k1, for
k, k1 P Z. As we vary ε, it follows that p yields a map of fil-
tered simplicial complexes. Hence the persistent homology of

tRεpXf quε¡0 can be bounded by that of
"

N�
n�0

RεpS1
nq
*
ε¡0

:

Proposition 2.6. For each ε ¡ 0 there is a homomorphism

ϕε : Hd

�
N¡
n�0

Rε
�
S1
cn

�
;F

�
ÝÑ Hd

�
Rε

?
N�1pXf q;F

�
between d-dimensional homology with coefficients in a field
F, which makes the following diagram commute:

Hd

�
RεpXf q;F

�
Hd

�
Rε

?
N�1pXf q;F

�

Hd

�
N�
n�0

Rε
�
S1
cn

�
;F



Hd

�
N�
n�0

Rε
?
N�1

�
S1
cn

�
;F


p� p�
ϕε

Proof. Let σ be a d-simplex in
N�
n�0

RεpS1
cnq. This means that

σ � rx0, . . . ,xds for some collection of vertices

xj � pc0eiω0k
0
j , . . . , cNe

iωNk
N
j q, j � 0, . . . , d

where knj P Z, n � 0, . . . , N , satisfying the following two
conditions: First, knj ¤ kn` for all n � 0, . . . , d and every
0 ¤ j ¤ ` ¤ d; and second, that for each n � 0, . . . , N
and after deleting repetitions, rcneiωnkn0 , . . . , cneiωnknd s is a
dn-simplex in RεpS1

cnq for some 0 ¤ dn ¤ d. In particular,
this implies that }xj � x`}   ε

?
N � 1 for 0 ¤ j, ` ¤ d.

Let δ ¡ 0 be so that

max
n,j,`

�
|cn| �

���eiωnknj � eiωnk
n
`

��� 	� 2δ   ε

Since Xf is dense in TN�1, there exist integers k0   � � �   kd
so that k0 ¥ max

j,n
tknj u and }xj � xf pkjq}   δ{2, for all

j � 0, . . . , d. Then for each 0 ¤ n ¤ N and 0 ¤ j, ` ¤ d

|cneiωnkj � cne
iωnk` | ¤ δ � |cneiωnk

n
j � cne

iωnk
n
` |

  ε

and we have that σ1 � rxf pk0q, . . . , xf pkdqs is a d-simplex

in both
N�
n�0

RεpS1
cnq and Rε

?
N�1pXf q. Moreover, if we
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join each edge rxj , xf pxjqs it follows that σ and σ1 are the
base and top face, respectively, of a pd � 1q-dimensional
prism of height δ{2. This prism can be subdivided (as in the

proof of 2.1 in [14]) into pd � 1q-simplices in
N�
n�0

Rε
�
S1
cn

�
,

which shows that every class rzs P Hd

�
N�
n�0

Rε
�
S1
cn

�
;F



can be represented by a d-cycle z0 with simplices of the form
rxf pk0q, . . . , xf pkdqs P Rε?N�1pXf q.

A different choice of integers with the same properties,
results in a chain z10 so that z0�z10 is equal, through prisms in
Rε

?
N�1pXf q of height δ, to the boundary of a pd� 1q-chain.

Hence they determine the same homology class ϕεprzsq �
rz0s P HdpRε?N�1pXf q;Fq.

The persistent homology of
"

N�
n�0

RεpS1
nq
*
ε¡0

can be de-

termined explicitly: For each ε ¡ 0 the Künneth theorem [14]
implies that the (simplicial) cross product � induces an iso-
morphism

à
°
n
dn�d

�
Nâ
n�0

Hdn

�
Rε

�
S1
cn

�
;F

	�
� Hd

�
N¡
n�0

Rε
�
S1
cn

�
;F

�

which is natural with respect to simplicial maps. That is, the
persistence diagrams from the left-hand-side equal those of
the right. A theorem of Adams and Adamaszek [15] describes
the persistent homology contribution of each term!

Hdn

�
Rε

�
S1
cn

�
;F

	)
ε¡0

, n � 0, . . . , N.

Explicitly, the dn-dimensional barcode for
 
RεpS1

cnq
(
ε¡0

has
a single interval�

2|cn| sin
�
π

`

2`� 1



, 2|cn| sin

�
π
`� 1

2`� 3


�
in each dimension dn � 2`�1, for ` ¡ 0. Moreover, the only
intervals starting at zero appear in dimension 1 and are of the
form r0,?3|cn|s. Let χn be the indicator function for this
interval; that is, constant and equal to 1 inside and 0 outside.

Proposition 2.7. If dgmd is the d-dimensional persistence

diagram of the filtered complex
"

N�
n�0

Rε
�
S1
cn

�*
ε¡0

then

rkε
�
dgmd

� � � N°
n�0

χnpεq
d




Proof.
"

NÂ
n�0

Hdn

�
Rε

�
S1
cn

�
;F

	*
ε¡0

has an interval starting

at zero if and only if each dn is either 0 or 1. Hence d is
the number of 1-dimensional homology groups in the tensor

product. For each ε ¡ 0,
N°
n�0

χnpεq is the number of |cn|’s
so that ε   ?

3|cn|. It follows that the binomial coefficient
is exactly the number of ways in which an interval starting at
zero and with death-time greater than ε can be constructed.

Everything now comes together in the following theorem:

Theorem 2.8. Let M ¥ N and let τ be as in Thm 2.2. Then

� n°
n�0

χnpε{
?
λminq

d



¤ rkε

�
dgmdpSWM,τfq

�
¤

� n°
n�0

χnpε{
apN � 1qλmaxq
d



Proof. This follows by applying Lemma 2.3 twice. First, with
Kε � RεpXf q, K 1

ε � RεpSWM,τfq, φ � Ωf� , ϕ � Ω�1
f�

,
θ � ?

λmax and γ � 1?
λmin

, as in Proposition 2.5. Then

rkε{?λmin

�
dgmdpXf q

� ¤ rkε
�
dgmdpSWM,τfq

�
¤ rkε{?λmax

�
dgmdpXf q

�
The lower and upper bounds for Xf follow from applying
Lemma 2.3 a second time. One now uses φ � p�, θ � 1,
ϕ � ϕε and γ � ?

N � 1 as in Proposition 2.6. The explicit
expressions with binomial coefficients is Proposition 2.7.

A direct calculation using [16] allows one to bound λmax

and λmin in terms of the spectrum of f and the parameters for
the sliding window embedding:

Proposition 2.9. If FM�1 is the pM � 1q-th Fejér kernel and

Ψ �
gffe Ņ

k,l�0

FM�1

�
τpωk � ωlq

�
pN � 1qpM � 1q � 1

then

1 �
?
NΨ ¤ λmin

M � 1
¤ 1 � 1?

N
Ψ (4)

1 � 1?
N

Ψ ¤ λmax

M � 1
¤ 1 �

?
NΨ (5)

Remark 2.10. Replacing λmin (resp. λmax) in Theorem 2.8
by the lower (resp. upper) bound from Proposition 2.9, yields
explicit bounds for the persistent homology of SWM,τf in
terms of M , τ , N the |cn|’s and the ωn’s.
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