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ABSTRACT

Topological data analysis (TDA) has rapidly grown in
popularity in recent years. One of the emerging tools is
persistent local homology, which can be used to extract
local structure from a dataset. In this paper, we provide
a survey that explores this new tool, emphasizing its use
in data analysis.
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1. INTRODUCTION

Topological data analysis (TDA) bridges research from
computational geometry and topology, algebraic topol-
ogy, machine learning, and statistics in studying data-
centric problems. Recently, the field has produced a col-
lection of innovative techniques in studying the shape
of data. Two fundamental tasks in the field of TDA are
reconstruction (how to assemble discrete samples into
global structures) and inference (how to infer structure).

In this paper, we present persistent local homol-
ogy (PLH) as a recent development in TDA that is a
combination of the concepts of persistent homology and
local homology. Roughly speaking, the homology of a
topological space measures its topological features such
as connected components, tunnels, and voids. Local ho-
mology studies the homology within a local neighbor-
hood relative to its boundary. PLH turns the algebraic
concept of local homology into a multi-scale notion by
constructing extended series of homology groups [1, 2].
It is, in our opinion, the tool within TDA that studies
the local structure of data. We explore PLH from the-
oretical, algorithmic and application perspectives, with
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an emphasis on its application in data analysis. Further-
more, this paper unifies results developed by various
researchers over the past few years.

Section 2 gives a brief theoretical and algorithmic
exposition of PLH. Section 3 surveys applications of
PLH in several key areas, including road network analy-
sis, clustering and stratification learning. Section 4 con-
cludes by contemplating possible future directions.

2. PERSISTENT LOCAL HOMOLOGY

We give theoretical background for defining PLH,
namely, homology, persistent homology and local ho-
mology. We cover the relevant notions from their
smooth/continuous setting to the corresponding dis-
crete/simplicial setting, where the former is simple for
theory and the latter is appropriate for algorithms. For
more details, see [3, 4] for a gentle introduction to TDA
and [5] for algorithmic foundations.
Homology and persistent homology. Homology deals
with topological features of a space. Given a topological
space X, the zero-, one- and two-dimensional homology
groups, denoted as H0(X), H1(X) and H2(X) respec-
tively, correspond to components, tunnels and voids
of X. Formally, the construction of homology groups
begins with a chain complex C(X) that encodes infor-
mation about X, which is a sequence of abelian groups
C0(X),C1(X), . . . connected by homomorphisms known
as the boundary operators ∂k : Ck(X)→ Ck−1(X). The
k-th homology group Hk(X) = ker (∂k)/im (∂k+1).
We work primarily with relative homology groups
Hk(X,A) (for A ⊆ X) which is defined by the same for-
mula, but using boundary maps on the quotient spaces
Ck(X)/Ck(A)→ Ck−1(X)/Ck−1(A).

A more nuanced way to describe the shape of X is
using persistent homology, which is a multi-scale notion
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of homology. Its most common form applies to a se-
quence of topological spaces connected by inclusions,
called a filtration. That is, we may consider the finite
sequence ∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn = X. Apply-
ing homology to this sequence, the homology groups
are connected from left to right by homomorphisms in-
duced by inclusion Xi ↪→ Xj (for i ≤ j), denoted as
f i,jk : Hk(Xi) → Hk(Xj). The rank of the homology
groups changes as the index increases. When the rank
increases (equivalently, the map f i−1,ik is not surjective),
we call this a birth event at Xi, and when the rank de-
creases (the map f j−1,jk is not injective), we call it a
death event at Xj . Persistent homology pairs the birth
events and the death events as a multi-set of points in
the plane, called the persistence diagram; see [5].
Local homology. Homology studies the structure of the
entire topological space; however, we are often inter-
ested in studying the local structures in the data as well.
A standard tool to use for studying local structure is lo-
cal homology. The k-th local homology group of X at a
point x0 ∈ X is the relative homology Hk(X,X − x0).
Alternatively, it can be defined as the limit of the homol-
ogy of X relative to everything except a shrinking neigh-
borhood around x, limr→0Hk(X,X\Ur), where Ur is a
neighborhood of x0 with radius r.
Persistent local homology. In PLH, we adapt a multi-
scale notion of local homology based on persistence.
For a fixed distance α, we consider the “thickened” ver-
sion of X, that is, we let Xα denote the subset of Rd that
is at most distance α from X. We fix a neighborhood
V ⊂ Rd of x in the ambient space Rd, and let Uα =
V ∩ Xα. We then compute the homology of Uα relative
to its boundary ∂Uα. We construct an α-filtration by al-
lowing α to range from zero to the diameter of V . For
all α < α′, the inclusion Uα ⊂ Uα′ induces a homomor-
phism on homology:

H(Uα, ∂Uα)→ H(Uα′ , ∂Uα′).

In other words, we are interested in the persistent (lo-
cal) homology defined by the relative homology groups
H(Uα, ∂Uα), where α is the parameter that defines the
filtration. We denote the corresponding persistence di-
agram by Dgm(X;V ). In addition, we could consider
another notion of PLH, referred to as an r-filtration, con-
structed by fixing the thickening parameter α and vary-
ing the radius r of V , see [6] for details.
Distances between persistence diagrams. Given two
persistence diagrams, D1 and D2, we may want to com-

pare the diagrams. And, in fact, a well-defined distance
between persistence diagrams is the bottleneck distance:

W∞(D1, D2) := inf
f : D1→D2

sup
x∈D1

||x− f(x)||, (1)

where f : D1 → D2 is bijection between the dia-
grams D1 and D2. This distance between diagrams
is stable both for general filtrations [7, 8] as well as for
local homology filtrations [9, 10].
Persistent local homology computation. Comput-
ing PLH from potentially noisy point cloud samples is
more challenging than computing persistent homology
in general (see [2]), due to the combinatorial complexity
of computing ∂Uα, the boundary of local neighbor-
hoods. Delaunay complexes and their variants have
typically been employed to guarantee theoretical cor-
rectness [1, 11]; although, their construction does not
scale well with dimension. On the other hand, Vietoris-
Rips complexes have been used more commonly in TDA
due to their algorithmic simplicity and robust computa-
tion in practice (e.g. [12, 13]). It has been shown that
α- and r-filtrations of PLH could be approximated by
constructing families of Vietoris-Rips complexes [6].
Some progress has been made towards computing PLH
using even more compact combinatorial structures such
as Graph Induced Complexes [14]. In other contexts,
when the objects are convex shapes (e.g., straight road
segments as studied in [9]), a family of Čech filtra-
tions can provide quick computations, provided that the
radius of the neighborhoods is small enough.

3. APPLICATIONS OF PLH

The original application of PLH is in stratification learn-
ing and clustering – partitioning an object of interest into
pieces of uniform dimension. The role of PLH has ex-
panded to include applications to road network analysis
and beyond. We briefly explore these applications next.

3.1. Stratification Learning and Clustering

A classic problem in learning focuses on inferring the
structure of data from point cloud samples. In manifold
learning, we assume the samples are drawn from a man-
ifold; more generally, in stratification learning, we as-
sume the points are sampled from a stratified space (i.e.,
a mixture of possibly intersecting manifolds). Previous
work in pure mathematics has focused on the study of
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stratified spaces under smooth and continuous settings
without computational considerations of noisy and dis-
crete data [15, 16]. Statistical approaches that rely on
inferences of mixture models or local dimension esti-
mation require either strict geometric assumptions (e.g.
linearity) or may not handle complex singularities [17,
18] (as illustrated in Fig 1). Recently, topological ap-
proaches have led to new theoretical and algorithmic
results by addressing these issues. The main objective
is to cluster the point cloud samples, according to the
structure of their underlying manifold pieces and how
the pieces interact with one another, at multiple scales.
In particular, the local structure of a sufficiently sampled
stratified space could be studied based on PLH [1]; and
point cloud data (PCD) could be clustered by the man-
ifold pieces they belong to based on how the PLH of
nearby sampled points map into one another [11].

yx

Fig. 1. Left: A stratified space is constructed by at-
taching a disk to the tunnel of a pinched torus. Struc-
tures surrounding complex singularities are highlighted
at points x and y. It is difficult to cluster the sampled
points based on local dimension estimation alone, espe-
cially surrounding these complex singularities. Middle
and right: sampled points are clustered at two scales.

Stratification learning in the clustering setting relies
on ingredients of PLH and intersection homology [19,
20, 21]. A crucial component is to study a persistent
version of local homology intersection map. Intuitively,
two nearby points belong to the same cluster, if they
“look the same locally” and their local neighborhoods
are “glued together in a nice way”. Assume we are given
a stratified space X embedded in Rd, define Br(x) to be
a ball of radius r in Rd centered at x that corresponds to
a neighborhood of x ∈ X. For a fixed radius r, and for
every pair of points p, q ∈ Rd whose neighborhoods in-
tersect, we define the following relative homology map
φX(p, q, r):

H(X ∩Br(p),X ∩ ∂Br(p))→ (2)

H(X ∩Br(p) ∩Br(q),X ∩ ∂(Br(p) ∩Br(q))).

For example, consider the space X in R2 in Fig. 2. For
each pair (p, q), let f = φX(p, q, r) and g = φX(q, p, r).
Then the points p and q are considered to have the same
local structure if f and g are both isomorphisms, that is,
their local structures map into each other bijectively via
their intersection; equivalently, if ker f = cok f = 0
and if ker g = cok g = 0. For a fixed r, the local ho-
mology classes (in this case, “holes” or “tunnels” within
the local neighborhoods) are labeled in their correspond-
ing locations. In (a), X contains four pieces of one-
dimensional manifolds (colored in red, pink, purple and
blue). In (b), X itself is a one-dimensional manifold.
Both p and q belong to different clusters in (a) and the
same cluster in (b). However, the notion of “local” be-

γ1
α1 β1

f gγ1
α1α2

α3

β1

(a)

(b)

p q

p q

p q

p q

f g

Fig. 2. (a) p and q do not have the same local structure
at radius r since ker f 6= 0, that is, extra local structure
exists in the neighborhood of p; (b) p and q have the
same local structure at radius r since both f and g are
isomorphisms, that is, local structures of p and q map to
the local structure of the intersection bijectively.

comes unclear in the context of the uncertainty induced
from sampling, therefore a “persistence” version of the
above local homology intersection map is constructed to
define “same local structure” across multiple scales.

3.2. Road Network Comparison

Road networks are changing every day, due to evolv-
ing city architecture caused by new road construction,
temporary (or permanent) road closures, etc. Under-
standing where and by how much the road network has
changed is a new problem in transportation research.
Traditional algorithms for comparing road networks
have been heuristic in nature, failing to provide theoreti-
cal guarantees. The first non-heuristic distance measure
between road networks was presented in [9]. This algo-
rithm, explained next, uses PLH.
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Suppose X and Y are two graphs embedded in D,
a compact subspace of Rd, and let ε > 0 be a locality
parameter given a priori. The graphs X and Y repre-
sent the two road networks that we wish to compare.
For each x ∈ D, we look at V ε

x = Bε(x), the ball
centered for X at x of radius ε. The local signature
at x (for locality parameter ε) is the persistence diagram
SX(x, ε) := Dgm(X;V ε

x ). Likewise, we define the lo-
cal signature for Y as SY(x, ε) := Dgm(Y;V ε

x ). A local
signature at x ∈ D is a descriptor (in this case, a persis-
tence diagram) that is used to describe the local structure
as witnessed by x. The parameter ε is used to determine
how far x “can see”.

(a) Local Structures (b) Signature restricted to X

Fig. 3. PLH compares structures present in local neigh-
borhoods; see (a). Choosing neighborhoods centered on
each point of X, we can visualize the PLH distance be-
tween graphs embedded in the same domain; see (b).

Instead of comparing the graphs X and Y directly,
we compare the local signatures SX(x, ε) and SY(x, ε).
We define the local distance signature ψε : D → R by
ψε(x) = W∞(SX(x, ε), SY(x, ε)), where W∞(·, ·) is
the Bottleneck distance as defined in the previous sec-
tion; see Figure 3, which illustrates the distance between
two graphs generated from GPS trajectories in Athens.1

While the local signatures are very insightful, some-
times it is necessary to quantify the distance between
two graphs with a single number. To this end, we inte-
grate the local distance over D as well as over a range
of values for ε in order to obtain a distance between our
graphs X and Y:

Definition 3.1. The PLH distance metric is:

dLH(X,Y) =
∫ r1

0
ω(r)

∫
D
η(x)ψε(x) dx dε,

where η : D → R and ω : [0, r1] → R are non-negative
weight functions that integrate to unity.

We note here that as long as both weight functions
1Data is available at www.mapconstruction.org.

are everywhere positive, dLH is a metric; see [9]. The
PLH Metric is a powerful tool in road network analysis,
as it provides an actual metric between road networks
(represented as graphs embedded in the plane), as well
as provides a visualization of the differences between
the networks. In [22], this approach is compared against
other distances between embedded networks.

3.3. Other Applications

PLH can be used in (local) dimension estimation [10,
23]. Its variant, persistent local cohomology, could be
used to analyze branching structures in high-dimensional
point cloud data for scientific visualization [24]. Strati-
fication learning based on PLH could also be formulated
in the context of graph reconstruction from noisy point
cloud, to classify points as either vertices or edges, and
to determine the degree of the vertices [25, 26].

Thinking of PLH as a local feature, it can be used
as an input to a machine learning algorithm. Bendich
et al. [10] describe a method, called multi-scale local
shape analysis (MLSA), for extracting local geometric
and topological structures in data sets. In particular,
they use PLH as features in a machine learning algo-
rithm to classify LIDAR data sets, demonstrating that
MLSA outperforms PLH and PCA alone, when used to
train an SVM classifier.

4. DISCUSSION

In this paper, we defined persistent local homology
(PLH), illustrating the power of this tool in several
applications, including stratified learning and cluster-
ing, road network analysis, and machine learning. We
have discussed single parameter filtrations, but we ac-
knowledge that the study of PLH can also benefit from
advances in multi-parameter persistence, allowing us to
vary multiple parameters (e.g., both α and r) simultane-
ously. Moreover, using PLH in new application domains
will present new and interesting challenges. For exam-
ple, PLH can be applied in scientific visualization and
medical image analysis, where one studies structures
such as vascular networks.
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