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ABSTRACT
Developing tools to analyze signals defined over a graph is a
research area that is attracting a significant amount of contri-
butions because of its many applications. However, a graph
representation does not capture the overall information about
the data, as it implicitly takes into account only pairwise re-
lations. The goal of this paper is to extend signal processing
tools to signals defined over hypergraphs, which represent a
formal framework to describe multi-way relations among the
data. First, we suggest alternative ways to introduce a Fourier
Transform (FT) for signals defined over hypergraphs and, in
particular, for simplicial complexes. Then, building on the
notion of Fourier Transform, we derive a sampling theorem
aimed at identifying the minimum number of samples neces-
sary to encode all information about band-limited hypergraph
signals.

Index Terms— hypergraph signals, simplicial complex,
sampling

1. INTRODUCTION

The study of signals defined over a graph is a field that is
receiving a lot of attention because of its many potential ap-
plications [1]. Given a graph G(V, E) composed by a set V
of vertices and a set E of edges, a graph signal is typically
represented as a mapping from the vertex set V to the the
space of reals R. As an example, we may think of a biolog-
ical network, where the vertices represent proteins, enzymes,
etc, whereas the presence of an edge between two nodes im-
plies that the corresponding substances take part in a chem-
ical reaction. The value of the signal over each vertex rep-
resents the concentration of the corresponding substance. In
this case, the signal is evolving through time as a result of the
chemical reactions. Another example is image segmentation.
In such a case, the graph is given by the pixels of an image
and the signal represents the luminance of each pixel. The
edges among pixels represent similarities, expressed in terms
of neighborhood and close values of luminance. Building on
such a graph, it is possible to achieve image segmentation
through graph partitioning [3].

In spite of its potentials, the graph signal model suffers
from some major limitations. First of all, a graph represen-
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tation is only indicative of pairwise relations. In general,
multi-way correspondences are more informative and should
be taken into account [10]. As an example, the need for go-
ing beyond pairwise representations in computer vision was
motivated in [4]. Talking about image segmentation, similar-
ity in terms of texture involves the analysis of a set of pixels.
In such a case, pairwise relations are clearly insufficient. In
molecular interaction networks, multilateral chemical inter-
actions are not compatible with graph edges; graph represen-
tations are possible but they may imply a loss of information
that can yield wrong interpretations [5], [6]. Moreover, graph
representations are particularly well suited to emphasize clus-
tering behaviors, which is an important category in many ap-
plications. However, clustering is not the only way to estab-
lish features of a set of points. Further categorizations may
shed more light on the data under analysis. In this broader
perspective, algebraic topology can provide very useful tools
[8], [9]. Finally, a further limitation is that, typically, a graph
signal establishes a correspondence between vertices and real
(complex) numbers. However, in many cases, it is more in-
formative to associate a signal value not only to vertices, i.e.
singleton sets, but to subset of vertices of size greater than
one, like edges, triads, and so on. The aim of this paper is
to adopt convenient signal processing tools, such as Fourier
transform and sampling theory, to deal with signals defined
over hypergraphs and, in particular, over simplicial and cell
complexes.

A hypergraphH(V, E) is identified by a set V of elements
(equivalently, nodes or vertices) and by a family E of sub-
sets of V [7]. Each element e of E is called a hyperedge. A
weighted hypergraphH(V, E ,w) is a hypergraph with a non-
negative number w(e) associated to each hyperedge and w
is the vector collecting all weights. A hypergraph signal is
defined as a mapping from the set of hyperedges E to real
numbers R. Given two vertices v1 and vk, there is a hyper-
path between them if there exists an alternating sequence of
distinct vertices and hyperedges v1, e1, v2, e2, . . . , ek−1, vk,
such that {vi, vi+1} ∈ ei ∈ E . A hypergraph is connected if
there is a hyperpath between every pair of vertices.

In many applications, the hypergraph signal x admits a
compact representation, i.e., it can be expressed as x = Us,
where s is either exactly or approximately sparse. For exam-
ple, a signal could be a smooth function over clusters and it
could be sufficiently localized around the ”voids” of a hyper-
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graph. In such a case, the columns of U may represent clusters
or some topological features and the only nonzero (or approx-
imately nonzero) entries of s are the ones associated to these
features.

Sampling theory, on the other hand, aims to recover a
sparse or band-limited graph signal from a subset of values.
Given a subset of hyperedges S ⊆ E , we define a vertex-
limiting operator as a diagonal matrix DS such that

DS = Diag{1S} (1)

where 1S is the set indicator vector, whose i-th entry is equal
to one, if i ∈ S , or zero otherwise. Similarly, given a unitary
matrix U and a subset of indices F ⊆ E∗, we introduce the
operator

BF = U ΣF U∗, (2)

where ΣF is a diagonal matrix defined as ΣF = Diag{1F}
and (·)∗ is the symbol denoting conjugate transpose. The role
of BF is to project a vector x onto the subspace spanned by
the columns of U whose indices belong to F . It is immediate
to check that both operators DS and BF represent orthog-
onal projectors. A signal x is perfectly band-limited over a
frequency set F if BFx = x. In the following and for the
sake of simplicity, we will drop the subscripts referring to the
sets whenever this will not cause any ambiguity.

In the following, we start by providing basic definitions
of simplicial and cell complexes and considering alternative
representations of hypergraphs in Section 2. Then, in Section
3 we illustrate possible ways to define a Fourier transform for
these structures. Building on the definition of Fourier trans-
form, we derive a sampling theorem establishing the condi-
tions for perfect reconstruction of hypergraph signals from its
samples based on the properties of the operators D and B.

2. CELL AND SIMPLICIAL COMPLEXES

Alternative representations of hypergraphs are available. In
the following, we will mostly rely on two basic and most com-
monly used classes of hypergraphs - simplicial complexes and
cell complexes.

We start by considering a notorious subclass of hyper-
graphs that is called cell complexes [10]. A cell complex
consists of a collection of finite dimensional p-cells, where
each p-cell σp is defined as a set of points homeomorphic to
a closed unit p-ball

Bp = {x ∈ Rp : ‖x‖ ≤ 1}. (3)

The boundary of the p-cell σp in this case is a part of the p-cell
that is homeomorphic to the boundary of the unit ball, i.e.,

∂Bp = {x ∈ Rp : ‖x‖ = 1}, (4)

and consists of the set of (p − 1)-cells. From the intuition
above, a p-cell may be described by an ordered set of ver-
tices that comprise a convex p-polytope. The lowest order,

i.e. 0-cells are usually called vertices, 1-cells - edges and 2-
cells - faces. Next, we consider a subclass of cell complexes
- simplicial complexes, where each p-cell consists exactly of
(p + 1) vertices. In general, cell complexes provide a more
effective representation, because they do not restrict each p-
cell to have the same number of vertices, however simplicial
complexes are simpler to handle.

An abstract simplicial complex K on the set of vertices V
is a collection of subsets of V that is closed under inclusion
[11]. Formally, if σ ∈ K and τ ⊂ σ, then also τ ∈ K. The
simplicial complex may be weighted, in which case to each
element of K may be assigned some weight. An i-simplex
σ of K is an element of K with cardinality i + 1, so that a
0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is
a triangle, and so on. The set of i-simplices of K is denoted
by Si(K). Next we fix an order of the vertices in V , and
assume that the orientation of faces is given by the ordering
of the vertices. There are two possibilities to orient a simplex
σ: all the simplices given by even permutations of the initial
ordering are called positively oriented and each such simplex
we denote by +σ, on the other hand a simplex belonging to
the class of odd permutations is negatively oriented and is
denoted by −σ. A simplicial i-chain is a formal finite sum of
i-simplices ∑

σ∈Si(K)

ασσ, (5)

with coefficients ασ ∈ R. The group of all i-chains is called
i-chain group of K and is denoted by Ci(K,R). The group
of functions from Ci(K,R) to R, that is a dual of the i-
chain group Ci(K,R), is denoted by Ci(K,R) and is called
i-cochain group. In fact, our signal f ∈

⋃P
i=0 C

i(K,R), for
some P ≤ |V|. The co-boundary map δi : Ci(K,R) →
Ci+1(K,R) is given by

δif(σ) =

i+1∑
j=0

(−1)jf([v0, . . . , vj−1, vj+1, . . . , vi+1]), (6)

where −1 ≤ i < dim K. The map δi is therefore evaluated
on the simplex σ and equals to the sum of f over all faces of
σ taking into account their orientation. It is easy to observe
that δiδi−1 = 0, which means that Bi(K,R) := im δi−1 ⊆
Zi(K,R) := ker δi. The elements of the group Bi(K,R) are
called coboundaries and the elements of Zi(K,R) are cocy-
cles. The cohomology group is defined as a quotient group
Hi(K,R) = Zi(K,R)/Bi(K,R). Using the above defini-
tion of the coboundary mapping one can define combinatorial
k-Laplacians as [21], [20]

Ldownk := δk−1δ
∗
k−1, (7)

Lupk := δ∗kδk, (8)

Lk := Ldownk + Lupk . (9)

All k-Laplacians are self-adjoint and positive semidefinite.
The spectrum of Lk is uniquely defined by the spectra of
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Ldownk and Lupk . Moreover spectra of Lupk and Ldownk coin-
cide up to the multiplicity of zero eigenvalue. Therefore we
will consider the eigenvalues of Lupk . By the Rayleigh-Ritz
theorem, the eigenvalues of Lupk are given by the following
iterative optimization problem [19]

λupj = min
f⊥Bi(K,R)
f⊥ul,l<j

〈Lupi f, f〉
〈f, f〉

= min
f⊥Bi(K,R)
f⊥ul,l<j

‖δif‖2

‖f‖2
, (10)

where {ul}l=1,...,i−1 are the optimal vectors found during the
previous iterations. To interpret the result provided by (10) let
us consider the case when i = 0. In this case the operator δ0
assigns to each edge the value of difference of the linked ver-
tices, therefore ‖δ0f‖ may be interpreted as a total variation
of the signal f defined over vertices. In the same manner we
can interpret ‖δkf‖ as a higher order total variation of some
signal f ∈ Ck(K,R) which lives on k-simplices.

The cohomology group Hi(K,R) is the dual of the cor-
responding homology group Hi(K,R), which in turn char-
acterizes k-dimensional cycles or voids appearing in K [11].
Eigenvectors belonging to the ker Lk can be used to char-
acterize such cycles due to the fact that the kernel of the
Laplacian Lk is isomorphic to the k-th homology group, i.e.
kerLk ∼= Hk(K,R). Homology group Hk(K,R) in turn is
a vector space over R. The dimension of the corresponding
homology group is denoted by βk = dim Hk(K,R). The
numbers βk are known as Betti numbers and each of them
characterizes the presence of a k-dimensional cycle. For ex-
ample β0 is equal to the number of connected components
in K, β1 denotes the number of non-contractible loops in K
and so on for higher dimensions. Therefore we could also
expect that eigenvectors of Lk corresponding to the small
eigenvalues will characterize subsets where k-dimensional
cycles are up to appear, in pretty much the same manner as
the first eigenvectors of L0 identify clusters in a graph, i.e.
dense subsets of K separated by small cuts.

It is interesting to note that the eigenvectors {u0
i } of L0

are linked to the eigenvectors {u1
i } of L1. To demonstrate

this let us consider some eigenvector u0 of L0, i.e.

L0u
0 = δ∗1δ1u

0 = λ0u0. (11)

By applying a co-boundary operator δ1 to u0, we can see that
the resulting vector is an eigenvector of L1 corresponding to
the same eigenvalue λ0. In fact,

L1δ1u
0 = δ1δ

∗
1δ1u

0 + δ∗2δ2δ1u
0

= δ1δ
∗
1δ1u

0 = λ0δ1u
0, (12)

where we used δ2δ1 = 0 which follows directly from (6).

3. HYPERGRAPH TOTAL VARIATION

The Graph Fourier Transform (GFT) has been recently intro-
duced as a fundamental tool to analyze graph signals [22],

[23], [1], [25], [2] . Alternative definitions exist, based on the
projection of the observed signal onto the space spanned by
the eigenvectors of either the Laplacian matrix [1] or the adja-
cency matrix [2]. Indeed, it should come with no surprise that
there is no unique way to introduce the GFT, as alternative
ways capture different features of the signal under analysis or
may shed different light on the processing tools. A formal
way to identify the Fourier basis involves the minimization of
the total variation of a graph signal. Alternative definitions
of total variations for graph signals have been used in [1], [2]
for undirected and directed graphs.

A unified approach to define the total variation comes
from the observation that the cut size is a submodular func-
tion. First we remind the definition of a cut set and its size.
Given a subset of vertices S, together with its complement
S, the hyperedge boundary ∂S is defined as the set of hyper-
edges which are cut, i.e. ∂S := {e ∈ E|e∩S 6= ∅, e∩S 6= ∅}.
The cut size between S and S is then

cut(S,S) :=
∑
e∈∂S

w(e). (13)

As a consequence, its Lovász extension, which is a func-
tion defined over the real domain, is a convex function [17].
Hence, the total variation can be defined as the Lovász exten-
sion of the cut function. As an example, for directed graphs,
the total variation of a real vector x over a directed graph is

TV(x) :=
∑
i,j

aij(xi − xj)+ (14)

where aij is the (i, j) entry of the adjacency matrix and
(x)+ := max(0, x). The total variation of a signal defined
over an undirected hypergraph is [15]:

TV(x) =
∑
e∈E

w(e) max
i,j∈E

|xi − xj |. (15)

The Fourier basis can then be sought as the set of orthonormal
vectors that minimize the total variation, as given in (14) for
graphs, or (15) for hypergraphs. In all cases, in spite of the
convexity of the objective function to be minimized, the prob-
lem is non-convex because of the unit norm vector constraint.
For this reason, in graphs the following alternative definition
of total variation is typically used [1]:

TV(x) :=
∑
i,j

aij(xi − xj)2 = x∗Lx, (16)

built on the Laplacian matrix L. The minimization of this
quadratic form, normalized to the square norm of x, leads to
an eigenproblem whose solution is given by the eigenvectors
of L associated to the smallest eigenvalues of L. Because
of its simplicity, this approach can then be extended to de-
fine the Fourier Transform for signals defined over simplicial
complexes, due to the fact that they posses simple topological
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Fig. 1. Example of band-limited hypergraph signal defined
over a simplicial complex of order K = 2.

structure. Let us denote by Lk = UkΛkU∗k the eigendecom-
position of the k-th order Laplacian defined in (9). Every sig-
nal x = [x0, . . . ,xK ]∗ defined over a simplicial complex of
orders up to K, can be represented as

x =


x0

x1

...
xK

 =


U0 0 · · · 0
0 U1 · · · 0
· · · · · · · · · · · ·
0 · · · · · · UK



s0
s1
...
sK

 := Us.

The block x0 has dimension |V| and contains the values over
all the vertices, the block x1 has dimension |E| and it contains
the values of the signal over the edges, and so on. Typically,
the vector s is sparse, because only a few eigenvectors are
involved. The Fourier Transform of a signal defined over a
simplicial complex can then be defined as

x̂ = U∗x (17)

with inverse Fourier transform x = U x̂. The main property
of a FT defined in this way is that the signal is sparse when it
varies smoothly either over the clusters defined over the ver-
tices, or it tends to be localized over the edge cycles around
the holes, or around voids enclosed by the faces of a simpli-
cial complex. Therefore the sparsity pattern is informative
about the topological properties which, in turn, are reflected
in signal’s structure. In Fig. 1, we show an example of sim-
plicial complex of order K = 2 along with the structure of
the eigenvectors corresponding to the second smallest eigen-
value of L0 and to the smallest eigenvalues of L1 and L2. The
colors on the vertices represent the values of the second eigen-
vector of L0 and indeed emphasize two clusters. The colors
on the edges encode absolute values of the first eigenvector of
L1 and we can see that the energy is maximally concentrated
around the hole. The absolute value of the entry of the first
eigenvector of L2 is shown over triangles as different colors.
The white region corresponds to the maximum amplitudes,
thus emphasizing the region of the 2-simplices with higher
degree of irregularities.

4. SAMPLING HYPERGRAPH SIGNALS

Let us study now the problem of sampling a hypergraph signal
defined over a simplicial complex and derive the conditions

for perfect reconstruction of a signal from its samples. For
simplicity of notation, let us consider a signal defined over
simplicial complex of order 2, i.e. vertices, edges and trian-
gles and denote by A ≡ V ∪ E ∪ T the ensemble of vertices,
edges, and triangles where the signal is defined. By definition,
the cardinality ofA is |A| = |V|+|E|+|T |. Given a family of
subsets S ⊆ A, we defined a set-limiting operator as a diago-
nal matrix D of size |A| × |A|, whose diagonal entry is equal
to 1 if the corresponding element (either vertex, edge or trian-
gle) belongs to S or 0 otherwise. Correspondingly, Sampling
a graph signal x over a set S of vertices gives rise to a vector
xs := Dx. The basic question with sampling is whether it is
possible to reconstruct the overall signal from its samples and
how. Generalizing our recent findings about graph signals in
[18], we can prove the following theorem:

Theorem 1. Given a band-limited signal x = Bx, it is pos-
sible to reconstruct x from its sampled version xs = Dx if
and only if

‖BD‖2 = ‖DB‖2 < 1. (18)

If condition (18) holds, the reconstruction formula is pro-
vided by the following theorem [18].

Theorem 2. If condition (18) of the sampling theorem holds
true, then any F-band-limited signal x can be reconstructed
from its sampled version xS by the following formula

x =

|F|∑
i=1

1

σ2
i

〈xS ,ψi〉ψi, (19)

where {ψi}i=1..K and
{
σ2
i

}
i=1..K

with K = |F|, are the
eigenvectors and eigenvalues of BDB.

It is worth emphasizing that, even when condition (18) is
met, the selection of the samples’ location on each simplical
complex is critical, as it directly affects the conditioning of
the matrix to be inverted. Some of the strategies proposed for
graphs in [18] can be extended to simplicial complexes, but
the topic is clearly still open. Furthermore, in situations in-
volving some kind of diffusion, the bandwidth over simplices
of nearby orders can be correlated. This raises an interesting
question on how to estimate the minimal bandwidth enabling
a signal recovery under a maximum reconstruction error.

5. CONCLUSIONS

In this work we considered signals defined over hypergraphs.
First we examined possible ways to define Fourier basis for
hypergraph signals and for signals defined over cell or sim-
plicial complexes in particular. Based on the definition of the
Fourier transform we outlined some basic properties of basis
vectors illustrating them with a numerical example. Finally,
we approached the problem of sampling of hypergraph sig-
nals giving the condition and reconstruction formula.
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