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ABSTRACT

We present a novel method to hierarchically cluster networked data al-

lowing nodes to simultaneously belong to multiple clusters. Given a net-

work, our method outputs a cut metric on the underlying node set, which

can be related to data coverings at different resolutions. The cut metric

is obtained by averaging a set of ultrametrics, which are themselves the

output of (non-overlapping) hierarchically clustering noisy versions of

the original network of interest. The resulting algorithm is illustrated in

synthetic networks and is used to classify handwritten digits from the

MNIST database.

Index Terms— Clustering, Network Theory, Cut Metrics, Hierar-

chical clustering, Covering, Dithering.

1. INTRODUCTION

Given a network, i.e. a set of nodes endowed with a pairwise dissim-

ilarity function, the objective of clustering is to partition the node set

into groups such that nodes inside one group are more similar to each

other than they are to nodes outside of it [1]. The generality of such op-

eration fosters the extended application of clustering in multiple fields

of knowledge such as social network analysis [2], political sciences [3]

and neuroscience [4]. Traditional methods of clustering that output only

one partition of the node set are not always useful or appropriate since

there might be multiple layers of interrelation within the structure of the

data or particular nodes that rightfully belong to more than one cate-

gory [5–7].

Hierarchical clustering methods, whose output is a dendrogram con-

sisting of a nested set of partitions indexed by a resolution parame-

ter [1, 8], capture multi-resolution relations in the data overcoming the

first limitation of traditional clustering. Examples of these methods are

UPGMA [9], Ward’s method [10] or single linkage [11]. Soft or fuzzy

clustering methods accommodate for the allocation of a node to multiple

clusters by assigning to each node a membership degree or probability

of belonging to different subsets [12–14]. An alternative solution to the

second limitation of traditional methods is named overlapping cluster-

ing and involves non-hierarchical deterministic assignments of nodes to

more than one subset [15].

In the present paper, a hierarchical overlapping clustering method

is proposed. Our method outputs a collection of groupings that repre-

sents several layers on the structure of the data depending on the degree

of relation between the nodes (hierarchical), while allowing a node to

belong to more than one subset (overlapping). In order to achieve this, a

systematic method for obtaining cut metrics [16,17] is described, which

are later used to obtain nested collections of coverings over the node set.

We introduce the necessary notions for the definition of our clus-

tering method (Section 2) and then define cut metrics and explain their

relation to coverings (Section 3). In Section 4 we leverage this relation to

define a hierarchical overlapping clustering method based on averaging

several outputs of a predetermined hierarchical (non-overlapping) clus-

tering method applied to noisy versions of the network of interest (see

Algorithm 1). Finally, in Section 5 several illustrative examples as well

as the application of the proposed algorithm to classifying two digits

from the MNIST database can be found.
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2. PRELIMINARIES

Let N = (X,AX) be a network defined by a finite set of nodes X

and a nonnegative dissimilarity function AX . The dissimilarity function

AX : X × X → R+ portrays how different the nodes are and it is

required to satisfy AX(x, x′) ≥ 0 for all x, x′ ∈ X and AX(x, x′) = 0
if and only if x = x′. No assumptions are made on whether AX is

symmetric or on whether it satisfies the triangle inequality. The space of

networks is denoted by N .

We define a partition of the space X as a collection PX =
{B1, · · · , Bm} of nonintersecting subsets of X that covers the whole

space. That is, the elements of the partition PX satisfy Bi ∩Bj = ∅ for

all i 6= j and ∪m
i=1Bi = X . The space of partitions is denoted by P .

We further define an equivalence relation as a binary relation between

elements of X such that for all triplets x, x′, x′′ ∈ X , we have that

x ∼ x (reflexivity), x ∼ x′ if and only if x′ ∼ x (symmetry), and the

relations x ∼ x′ and x′ ∼ x′′ imply the relation x ∼ x′′ (transitivity).

Observe that the relation x ∼ x′ if and only if x, x′ ∈ Bi for some i is

an equivalence induced by the partition PX . The converse, namely, that

an equivalence relation defines a partition of X is also true [18, 19].

The goal of a clustering method is to partition the space X into

groups of nodes that are more similar to each other than they are to the

rest as indicated by the dissimilarity function AX . This is formally spec-

ified by defining a clustering method G as a structure preserving map

from the space of networks to the space of partitions, G : N → P .

That G is structure preserving implies that the output partition G(N)
is defined on the node set of N for all N ∈ N . Clustering methods

can be generalized to hierarchical clustering methods where the output

is not a single partition but a dendrogram DX , which is defined as a

nested collection of partitions DX(δ) indexed by a resolution parameter

δ ≥ 0 [20]. The resolution parameter specifies what is considered suffi-

cient proximity for the creation of the cluster. At resolution δ = 0, the

partition DX(0) = {{x}, x ∈ X} puts all nodes in separate singleton

clusters. At large resolutions δ ≥ 0, the partition DX(δ) = X assigns

all nodes to the same cluster. For intermediate resolutions the partitions

are nested in the sense that as δ increases, nodes may combine into new

clusters but once they are clustered at a certain resolution they stay clus-

tered at larger resolutions. Formally, if we use x ∼δ x′ to signify that x

and x′ are in the same cluster at resolution δ, it must be that x ∼δ′ x′

for all resolutions δ′ ≥ δ. A hierarchical clustering method H is defined

as a structure preserving map from the space of networks N to the space

of dendrograms D [20],

H : N → D (1)

An important limitation of clustering and hierarchical clustering meth-

ods is that nodes belong to one and only one element of a partition.

However, in many practical situations there are nodes that naturally be-

long to more than one category. For e.g., in the dumbbell network of

Fig. 3 it is intuitive that the clouds of nodes on each side should be sep-

arate clusters. However, it is not so clear that all of the handle should be

a separate cluster as it is not unreasonable to assign its borders to the re-

spective cloud clusters. We can overcome this issue by using coverings

in lieu of partitions, tolerance relationships in lieu of equivalences, and

nested collections of coverings in lieu of dendrograms; see Table 1.

Formally, we define a covering of X as a collection CX =
{C1, . . . , Cm} of subsets of X such that ∪m

i=1Ci = X but not nec-

essarily Ci ∩ Cj = ∅ for i 6= j. Likewise, we define a tolerance
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Method Relation Grouping Nested hierarchy

Hierarchical Equivalence Partition Dendrogram

Overlapping Tolerance Covering Nested covering

Table 1: Parallelism between hierarchical and overlapping clustering.

relation between pairs of elements of X as a relationship that is reflexive

(x ↔ x) and symmetric (x ↔ x′ implies x′ ↔ x) but not necessarily

transitive. It is immediate to realize that the relationship x ↔ x′ if

and only if x, x′ ∈ Ci for some i is a tolerance relation induced by the

covering CX . This observation allows us to introduce the notion of a

nested collection of coverings that we formally define next.

Definition 1. Let KX be a collection of coverings KX(δ) indexed by

the resolution parameter δ ≥ 0. If the covering KX(δ) induces the

tolerance relation x ↔δ x′ (a tolerance relation ↔ for each δ), then we

say that KX is nested if and only if

Border conditions: KX(0) = {{x}, x ∈ X} and there exists δmax

such that for all δ ≥ δmax it holds KX(δ) = {X}.

Nested coverings: If x ↔δ x′ at resolution δ, it must be that x ↔δ′ x
′

for all resolutions δ′ ≥ δ.

The family of all nested coverings is denoted as K.

As per Definition 1, a nested covering is to a covering what a den-

drogram is to a partition. Likewise, as coverings are generalizations of

partitions, nested coverings are generalizations of dendrograms; see Ta-

ble 1. The goal of this paper is to design overlapping clustering methods

that we formally define as structure preserving maps

O : N → K. (2)

Our approach to deriving overlapping clustering methods is to draw on

the equivalence between ultrametrics and dendrograms and a reinterpre-

tation of cut metrics as a nested collection of coverings as we discuss in

the following section.

3. NESTED COVERINGS DERIVED FROM CUT METRICS

Dendrograms are known to be equivalent to finite ultrametric spaces

[11]. An ultrametric u : X×X → R is a function that for all x, x′, x′′ ∈
X satisfies u(x, x′) ≥ 0, u(x, x′) = 0 if and only if x = x′, u(x, x′) =
u(x′, x), and u(x, x′′) ≤ max{u(x, x′), u(x′, x′′)}. These three con-

ditions imply that u is a metric that satisfies a stronger version of the

triangle inequality where sides of each triangle are smaller than the max-

imum size of the other two instead of being smaller than their sum [21].

It is not difficult to show that the function u : X ×X → R defined as

u(x, x′) ≤ δ ⇐⇒ x ∼DX (δ) x
′

(3)

is an ultrametric on the finite space X [20, Theorem 1]. Thus, if we de-

fine as U the space of ultrametrics [20], a hierarchical clustering method

H can be reinterpreted as a structure preserving map H : N → U .

Cut metrics are metrics that include ultrametrics as particular cases.

To define a cut metric, first consider a set S ⊆ X; then, the cut semimet-

ric δS [16, Ch. 4] associated with S assigns dissimilarity 0 to points x

and x′ when both belong to S or when both belong to the complement Sc

and dissimilarity 1 otherwise. Thus, with I denoting the indicator func-

tion, the cut semimetric dissimilarity between x and x′ can be written as

δS(x, x
′) = I

{

S ∩ {x, x′} 6= ∅
}

I
{

S
c ∩ {x, x′} 6= ∅

}

. (4)

This cut semimetric can also be understood as being induced by a binary

classifier which partitions the node set in two (S and Sc) and assigns a

unit dissimilarity to nodes belonging to different categories. If multiple

binary classifiers are considered, then a cut metric cX can be obtained

as the combination of all the associated dissimilarities. That is, cX is a

metric that can be written as

cX(x, x′) =
∑

S⊆X

λSδS(x, x
′) (5)

with λS ≥ 0 and where the sum ranges over all possible subsets of

X . Notice that λS′ = 0 for some S′ amounts to the associated binary

classifier not being considered in the construction of cX . Observe that

cX(x, x) = 0 and that cX(x, x′) = cX(x′, x), for x, x′ ∈ X . We may

now define a nested collection of coverings from cut metrics.

Proposition 1. Let X be a set of nodes and let cX be a cut metric de-

fined on the node set X . Let KX = {KX(δ), δ ≥ 0} be a collection

of coverings KX(δ). If, for each δ ≥ 0, the corresponding covering

KX(δ) is obtained from the tolerance relation given by

cX(x, x′) ≤ δ =⇒ x ↔δ x
′

(6)

then KX is a nested collection of coverings in the sense of Definition 1.

Proof: First, observe that (6) defines a genuine tolerance relation since

cX(x, x) = 0 implies reflexivity of ↔δ and cX(x, x′) = cX(x′, x)
implies symmetry. Second, for each δ a tolerance relation ↔δ is ob-

tained using (6) and this relation is used to construct a covering by blocks

KX(δ) [22]. Finally, observe that KX is nested since, for any δ < δ′,

cX(x, x′) ≤ δ < δ′ implies that x ↔δ x′ ⇒ x ↔δ′ x
′. �

Note that (6) is analogous to the relation between ultrametrics and

equivalence relations in (3). Also, in an analogy to dendrograms, observe

that for δ = 0, KX(0) = {{x}, x ∈ X}, and that there exists a δmax

such that for all δ ≥ δmax, KX(δ) = {X}. Then, for 0 < δ < δmax the

resulting tolerance relations define coverings in such a way that nodes

might or might not be in more than one subset, since there is no tran-

sitivity in the relation. If there exists at least one node that belongs to

more than one subset, it is said that there is overlap. It is relevant, then,

to compute the number of overlapping nodes for each value of δ. Define

the overlapping function as

fol(δ) =

n
∑

k=1

I
{

xk ↔δ xi, xk ↔δ xj , xi =δ xj (7)

for i 6= k 6= j, i, j = 1, . . . , n
}

where the tolerance ↔δ is determined by a cut metric cX(x, x′) as per

(6). The function fol(δ) adds one for each node that is overlapping, i.e.

that is in more than one subset of the covering KX(δ). Following from

the nested collection of coverings KX it is obtained that fol(0) = 0 and

that fol(δ) = 0 for all δ ≥ δmax.

The overlapping function provides essential information about the

grouping structure of the network. For instance, it serves to define clus-

terability as follows.

Definition 2. Let N = (X,AX) be a network, and let cX(x, x′) be

a cut metric defined over the set of nodes X . If there exists a δ such

that fol(δ) = 0, KX(δ) 6= {{x}, x ∈ X} and KX(δ) 6= {X}, then

(X, cX) is said to be clusterable.

In other words, the clusterability of the network under cX is given when

the resulting covering is a partition and is not the same partition as in

the extreme cases {{x}, x ∈ X} (all-separate) and {X} (all-together).

If the network is not clusterable, the overlapping function still provides

valuable information about the underlying grouping structure and may

help to identify those nodes that are subject to a closer scrutiny or that

simply cannot be fully incorporated into one subset or another; see Sec-

tion 5.

To sum up, in the same way as in hierarchical clustering, ultrametrics

are used to define equivalence relations that determine partitions, in the

proposed overlapping clustering method, cut metrics are used to define

tolerance relations that determine coverings; see Table 1.

Remark 1. Proposition 1 can be restated for cX being any symmet-

ric dissimilarity function, however, we specialize it to cut metrics since

this particular type of distance function arises when several hierarchical

clustering outputs are combined; see Section 4.
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input : no. of perturbations J , network N , hierarchical

clustering method H, perturbation(·)
for i=1:J do

Ñ=perturbation(N );

ui(x, x
′)=H(Ñ);

end

output: cX(x, x′)=avg(u1(x, x
′), . . . , uJ(x, x

′))

Algorithm 1: Overlapping clustering algorithm.

4. OVERLAPPING CLUSTERING ALGORITHM

In virtue of Proposition 1, cut metrics can be used to obtain nested col-

lections of coverings. We now discuss how to obtain cut metrics that

reflect the dissimilarity between the nodes of the network N in a sys-

tematic way. The first step towards addressing this issue is to consider

the following proposition.

Proposition 2. A convex combination of ultrametrics yields a cut metric.

Proof: Given (X, dX) where dX is a metric, then dX is in particular a

tree metric – there exists a tree graph in which it is possible to embed the

distance on its edges [16, p. 147] – if and only if it satisfies the four-point

condition [23, Theorem 1]

dX(x, x′) + dX(x′′
, x

′′′) ≤ max
{

dX(x, x′′) + dX(x′
, x

′′′),

dX(x, x′′′) + dX(x′
, x

′′)
}

(8)

for all x, x′, x′′, x′′′ ∈ X . Observe that the condition that all ultramet-

rics satisfy, namely u(x, x′′) ≤ max{u(x, x′), u(x′, x′′)}, is a particu-

lar case of (8). Hence, all ultrametrics are also tree metrics [16, p. 311].

Finally, note that tree metrics, as well as convex combinations of tree

metrics, are ℓ1-embeddable [16, Fact 11.1.4, 11.1.5]. Since a metric is

ℓ1-embeddable if and only if it is a cut metric [16, Proposition 4.4.2], a

convex combination of ultrametrics yields a cut metric. �

From this proposition, it is immediate that ultrametrics are partic-

ular cases of cut metrics. This also shows in the fact that equivalence

relations are particular cases of tolerance relations and that partitions are

particular cases of coverings; see Table 1. Also, Proposition 2 plays a

key role in the generation of cut metrics as it gives a systematic way to

obtain cut metrics from ultrametrics, which are readily available from

the application of hierarchical clustering.

Next step is to address the problem of obtaining ultrametrics that

are closely related to the network of interest. By intentionally apply-

ing random noise to the dissimilarity function AX of a network N , a

whole family of closely related networks can be obtained. Each one of

these networks yields a different ultrametric when a hierarchical clus-

tering method is applied. If all these ultrametrics are averaged, then a

cut metric is obtained (cf. Proposition 2) and a systematic method for

obtaining such cut metrics is readily available. This idea stems from

the concept of dithering [24]. Formally, let Ñ = {N1, . . . , NJ} be the

J networks resulting from dithering J times the dissimilarity function,

Ni = (X, Ãi), i = 1, . . . , J and where Ãi(x, x
′) is a specific realiza-

tion of a small perturbation around AX(x, x′). Let {u1, . . . , uJ} be the

set of ultrametrics resulting from applying a predetermined clustering

method H (cf. Section 1) to each of the networks in Ñ . Then, in virtue

of Proposition 2, build the cut metric as

cX(x, x′) =
1

J

J
∑

i=1

ui(x, x
′). (9)

Finally, use this cut metric to obtain a nested collection of coverings

(Proposition 1). The algorithm is described in Algorithm 1.

Remark 2. Proposition 2 also holds for non-negative linear combina-

tions of ultrametrics, but only a convex combination guarantees that the

distance scale described by the ultrametrics is preserved in the resulting

cut metric.
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Fig. 1: Layout, overlapping function and coverings for a simple network

consisting of two clouds.

Remark 3. It is important to observe that the cut metrics conform a

convex cone and hence, any non-negative combination of cut metrics

is still a cut metric. Also, observe that this is not true in the case of

ultrametrics: a non-negative linear combination of ultrametrics is not an

ultrametric [20, Section VII-B].

5. APPLICATIONS

The first three illustrations of Algorithm 1 are conducted on synthetic

networks N = (X,AX) where X is a set of points embedded in the

plane and AX is the Euclidean distance between them. As a hierarchical

clustering method H we apply single linkage [11] and average the clus-

tering output of J = 100 different noisy realizations of N . The noisy Ñ

are obtained by perturbing the positions of the nodes in the plane with

zero-mean gaussian noise with standard deviation σ = 0.01.

Consider the simple network portrayed in Fig. 1b, where the dis-

tance between nodes in the same point cloud is d1 = 3 and between

clouds is d2 = 18. The overlapping function is found in Fig. 1a. As

expected, this network is clusterable (cf. Definition 2), i.e., a meaning-

ful (non-overlapping) partition can be found. Indeed, for δ = 3.0151,

the overlapping function has a zero that does not correspond to the all-

separate or the all-together coverings. In fact, the resulting covering

KX(δ) = {C1, C2} is shown in Fig. 1b and it consists of two subsets

C1 and C2 each one containing one of the clouds. Observe that the value

of δ that generates this covering is in the order of d1.

Multiple resolution datasets. Consider now the network N with nodes

as depicted in Fig. 2b,c,d, where the distance between the nodes in the

four smaller clouds is d1 = 1, the distance between these four clouds as

well as the distance between the nodes of the fifth larger cloud is d2 =
2 and the distance between the smaller clouds and the larger cloud is

d3 = 5. There are three values of δ for which the network is clusterable

(see Fig. 2a) corresponding to the multiple meaningful resolutions that

the network presents. First, for δ = 1.0095 it is observed in Fig. 2b

that there is one subset for each of the closer clouds and one subset for

each of the nodes of the sparser cloud, this is reasonable for the value

of δ that is close to d1. For values of δ near d2 = 2 we can observe

two different informative partitions. For δ = 1.9940, the four closer

clouds have been clustered together but each of the nodes of the sparser

cloud remain separate; see Fig. 2c. Finally, for δ = 2.0090 as shown in

Fig. 2d, the four closer clouds are all clustered together and in a separate

subset the whole of the sparser cloud.

A solution to single linkage’s chaining effect. Consider the network

formed by the set of nodes in Fig. 3b,c where the distance between any

adjacent nodes is d = 3. Notice that in this case, unlike the previ-

ous examples considered, the expected clustering output is not unequiv-

ocal. Indeed, one might argue, e.g., that the natural clustering of the

above arrangement of points is to obtain three clusters – the two squared

and the linear arrangements – with some overlap in the boundaries, or,

quite differently, that the natural output should consist of two clusters

centered at both squared portions and sharing the whole linear arrange-

ment of nodes. Furthermore, if one applies single linkage clustering to

the (unperturbed) network of interest, the output dendrogram consists

of two different nested partitions one where every node is in a different

cluster and another one where every node belongs to the same cluster.
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Fig. 2: Overlapping function and coverings for a multiple resolution

network.
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Fig. 3: Overlapping function and coverings for a network that presents

SL chaining effect.

This phenomenon is known as chaining effect [8] and is an undesirable

concomitant of the definition of single linkage. To understand this ef-

fect, recall that the ultrametric uSL(x, x′) output by single linkage be-

tween x and x′ is given by the minimum cost of a path linking these two

nodes where the cost is defined as the maximum dissimilarity encoun-

tered when traversing the path [11]. Thus, for any pair of nodes x, x′

we have that uSL(x, x′) = d = 3 resulting in a global cluster formed

at resolution δ = 3. Our proposed approach, based on dithering, solves

both aforementioned problems: the lack of a single reasonable covering

and the chaining effect.

To see this, focus on the overlapping function shown in Fig. 3a. No-

tice that the network is not clusterable (cf. Definition 2), which aligns

with the lack of an intuitive non-overlapping outcome. Moreover, the

overlapping function contains several local minima and the coverings

corresponding to the two smallest ones are depicted in Fig. 3b,c. These

coverings correlate with our a priori notions of reasonable outputs and,

by exploring the remaining local minima, additional sensible coverings

are revealed. Observe also that the chaining effect vanishes when noise

is added to the data points. To understand this, consider three points

x, x′, x′′ where the first two belong to the left-most squared portion and

x′′ belongs to the opposite one. In the unperturbed version of the data,

there are multiple paths linking x and x′ of cost exactly 3, however, ev-

ery path linking x and x′′ with cost 3 must contain the linear portion

of the dataset. Hence, when noise is added, some of the paths linking

x and x′ might be disrupted but others might even decrease their cost,
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Fig. 4: Overlapping function and coverings for classification of digits 1

and 7 of the MNIST digit database.

however, the disruption of the linear arrangement necessarily increases

the cost of linking x and x′′, thus, recognizing x′′ as belonging to a dif-

ferent category from the other two points. At a fundamental level, by

introducing an algorithm based on dithering and averaging we obtain a

clustering method that depends not only on the path of minimum cost –

as single linkage – but also on the density of paths of near-minimal cost.

Handwritten digit classification. The method proposed is applied to

the classification of two usually hard to distinguish handwritten digits,

namely 1 and 7, taken from the MNIST database [25]. For each digit,

100 black and white images of size 28×28 are obtained at random from

the database and converted to a vector of size 784. Principal Component

Analysis (PCA) [26] is performed on these samples by estimating the

mean and covariance matrix with 5, 000 training samples of each digit.

The first 20 PCA components are kept. These 200 vectors of size 20
conform the nodes of the network. The dissimilarity matrix is obtained

by computing the euclidean distance between the 20-PCA vector nodes.

The dithering step is repeated J = 100 times applying white gaussian

noise of deviation σ to the positions in the PCA space. The value of σ is

given by 0.05 times the minimum positive element of the dissimilarity

matrix. The ultrametrics are obtained applying Ward linkage [10].

The resulting overlapping function can be found in Fig. 4a and it

is observed that the network is not clusterable. The minimum of the

local minima of the overlapping function is given by δ = 10340. The

resulting covering is portrayed in Fig. 4b. There are essentially two big

covers: C1 that contains all of the ones and 6 sevens of which 4 are

considered to be classification errors; and C3 which contains 94 sevens.

Then there is a smaller overlapping covering C2 that signals those nodes

in each of the bigger covers that are hard to classify and which may

require closer scrutiny. It is observed that the two digits that are also

in C1 are clearly confused with a one, also from the perspective of a

human classifier. The two digits that are signaled in C3 are those that

have a seven written with an extra line, which throws off the classifier.

Finally, we remark that the accuracy of the proposed method depends on

the accuracy of the hierarchical method used in each dithering step.

6. CONCLUSIONS

We introduced a hierarchical overlapping clustering method for net-

worked data that deterministically allows a node to belong to more than

one cluster. Cut metrics were used to extract nested coverings of the

data, and these cut metrics were obtained by averaging ultrametrics that

resulted from applying a predetermined hierarchical clustering method

to dithered versions of the network. The overlapping function was intro-

duced as a tool to analyze the obtained nested collection of coverings.

The proposed algorithm was applied to several illustrative examples

showing that it can handle multi-resolution data and solve undesirable

problems like single linkage’s chaining effect, and was also used to

classify handwritten digits while detecting equivocal data points.

6418



7. REFERENCES

[1] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Pren-

tice Hall Advanced Reference Series. Prentice Hall, Englewood

Cliffs, NJ, 1988.

[2] C. Lu, X. Hu, and J. Park, “Exploiting the Social Tagging Network

for Web Clustering,” IEEE Transactions on Systems, Man, and

Cybernetics–Part A: Systems and Humans, vol. 41, no. 5, pp. 840–

852, September 2011.

[3] M. Paulus and L. Kristoufek, “Worldwide clustering of the corrup-

tion perception ,” Physica A: Statistical Mechanics and its Appli-

cations, vol. 428, pp. 351 – 358, 2015.

[4] A. Ozdemir, M. Bolaños, E. Bernat, and A. Selin, “Hierarchical

Spectral Consensus Clustering for Group Analysis of Functional

Brain Networks,” IEEE Transactions on Biomedical Engineering,

vol. 62, no. 9, pp. 2158–2169, September 2015.

[5] M. A. Youssef, A. Youssef, and M. F. Younis, “Overlapping Multi-

hop Clustering for Wireless Sensor Networks,” IEEE Transactions

on Parallel and Distributed Systems, vol. 20, no. 12, pp. 1844–

1856, December 2009.

[6] P. C. H. Ma and K. C. C. Chan, “A Novel Approach for Discover-

ing Overlapping Clusters in Gene Expression Data,” IEEE Trans-

actions on Biomedical Engineering, vol. 56, no. 7, pp. 1803–1809,

July 2009.

[7] M. Liu, B. C. Vemuri, S.-I. Amari, and F. Nielsen, “Shape Re-

trieval Using Hirerarchical Total Bregman Soft Clustering,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol.

34, no. 12, pp. 2407–2419, December 2012.

[8] G. N. Lance and W. T. Williams, “A general theory of classificatory

sorting strategies 1. Hierarchical systems,” Computer Journal, vol.

9, no. 4, pp. 373–380, 1967.

[9] R. R. Sokal and C. D. Michener, “A Statistical Method for Evalu-

ating Systematic Relationships,” The University of Kansas Science

Bulletin, vol. 38 (II), no. 22, pp. 1409–1438, March 1958.

[10] J. H. Ward Jr., “Hierarchical Grouping to Optimize an Objective

Function,” Journal of the American Statistical Association, vol. 58,

no. 301, pp. 236–244, March 1963.

[11] G. E. Carlsson and F. Mémoli, “Characterization, Stability and

Convergence of Hierarchical Clustering Methods,” Journal of Ma-

chine Learning Research, vol. 11, pp. 1425–1470, April 2010.

[12] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Func-

tion Algorithms, Advanced Applications in Pattern Recognition.

Plenum Press, New York, NY, 1981.

[13] A. Baraldi and P. Blonda, “A Survey for Fuzzy Clustering Al-

gorithms for Pattern Recognition–Part I,” IEEE Transactions on

Systems, Man, and Cybernetics–Part B: Cybernetics, vol. 29, no.

6, pp. 778–785, December 1999.

[14] A. Baraldi and P. Blonda, “A Survey for Fuzzy Clustering Al-

gorithms for Pattern Recognition–Part II,” IEEE Transactions on

Systems, Man, and Cybernetics–Part B: Cybernetics, vol. 29, no.

6, pp. 786–801, December 1999.

[15] G. Cleuziou, “An Extended Version of the k-means Method for

Overlapping Clustering,” in 19th International Conference on Pat-

tern Recognition, 2008. ICPR 2008., 8-11 December 2008.

[16] M. Deza and M. Laurent, Geometry of Cuts and Metrics, LIENS -

Ecole Normale Supérieure, Paris, France, November 1996.

[17] J. Culbertson, D. P. Guralnik, and P. F. Stiller, “Injective metriz-

ability and the duality theory of cubings,” ArXiv e-prints, Jan.

2015.

[18] P. R. Halmos, Naive Set Theory, The University Series in Un-

dergraudate Mathematics. Van Nostrand Reinhold Company, New

York, NY, 1960.

[19] E. Schechter, Handbook of Analysis and Its Foundations, Aca-

demic Press, San Diego, CA, 1997.

[20] G. E. Carlsson, F. Mémoli, A. Ribeiro, and S. Segarra, “Axiomatic

construction of hierarchical clustering in asymmetric networks,”

CoRR, vol. abs/1301.7724, 2013.

[21] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geome-

try, vol. 33 of AMS Graduate Studies in Math., American Mathe-

matical Society, 2001.
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