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Abstract—Topological Data Analysis (TDA) is a topic
which has recently seen many applications. The goal of
this special session is to highlight the bridge between signal
processing, machine learning and techniques in topological
data analysis. In this way, we hope to encourage more
engineers to start exploring TDA and its applications. This
paper briefly introduces the standard techniques used in
this area, delineates the common theme connecting the
works presented in this session, and concludes with a brief
summary of each of the papers presented.

Index Terms—Topology, algebraic topology, data analy-
sis, machine learning, signal processing, network process-
ing, graph theory.

I. INTRODUCTION

The fundamental premise underlying Topological Data
Analysis (TDA) is that data has a “shape,” and that this
shape sometimes conveys meaningful information about
the data. In TDA, shape refers to those features which do
not change under continuous deformations. For example,
consider the objects shown in Figs. (1a), and (1b). If we
quantify the shape of these objects by the number holes
(the topological features) in them, then they differ in
topology even though they may be geometrically similar.
On the other hand, the surface of a sphere and that of a
bunny as shown in Figs. (1c) and (1d) differ substantially
in geometry, but have similar topology since they both
are surfaces which enclose a void. Such features may
appear too coarse to convey meaningful information, but
they are extremely robust. Topological methods therefore
trade resolution for an increase in robustness. There are
many applications (as seen in the references and the
papers presented in this session) where the increase in
robustness is more important than loss of resolution, and
so benefit from a topological approach.

TDA lies at the intersection of combinatorics, discrete
geometry, linear algebra, and of course topology. The
combination of these fields yields algebraic topology,
which is a constructive way to obtain topological sum-
maries. Topological summaries are algebraic objects
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Fig. 1: Figures in (a) and (b) have differ in topology,
whereas those in (c) and (d) share the same topology.

such as groups and vector spaces to topological spaces
in such a way to remain invariant under continuous
changes. Of these, homology spaces in particular are
very useful since they can be obtained through numerous
computationally efficient algorithms. Indeed, computing
homology has not been computationally feasible until the
past decade or so. Given a topological space, homology
assigns a sequence of spaces Hk, one for each dimension
k, called the homology spaces, whose dimensions covey
the measure of features described above. For example,
the first homology spaces – describing non-contractible
loops – of Figs. (1a) and (1b) are of dimensions 1 and
2 respectively. We will further discuss homology spaces
in Section II.

In the prototypical TDA application, data comes in the
form of either point clouds in some Euclidean space, as
a set of points with some measure of distance between
them, or in the form of a graph or hypergraph. The works
presented in this session will cover TDA techniques to
deal with all these different forms of input data.

The classical way of describing the shape of a point
cloud is by clustering, which is a very mature topic with
literally hundreds of papers describing various associated
techniques. However, clusters need not be the only shape
descriptors for point clouds – indeed, clustering only
addresses H0. One may similarly ask if the points are
distributed around in a cyclical structure, or if they are
distributed around the surface of a sphere. Performing
these tasks is a central theme in TDA techniques. As
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described in Section II, the first step is to construct com-
binatorial objects such as simplicial complexes, whose
structure is then algebraically expressed. Perea et al
will present one such application where the presence of
harmonics in a time signal are inferred by first converting
the signal into a point cloud and then looking for cyclical
structures in the point cloud.

The shape of graphs in general is a much more difficult
problem. Once again, classical approaches include graph
clustering and community detection algorithms. As is
in the case of point clouds [12], graph clustering is an
ill-posed problem and many clustering algorithm rely
on a priori knowledge about the nature of clusters or
make additional assumptions. Gama et al will present
a novel method of obtaining a multiscale summary of
network clusters using topological signatures, and show
its application in clustering handwritten digits from the
MNIST database.

The same TDA techniques which are applied to com-
binatorial objects derived from point clouds and metric
spaces can also be applied to graphs and certain hyper-
graphs in general, and the interpretation of the resulting
topological signatures is specific to the context. Memoli
et al will present one such application on using network
signatures to compare different weighted directed net-
works, and Fasey et al will show how local topological
signatures can be used to construct geographical maps
by tracking mobile nodes in a region of interest.

In addition to the problem of studying the structure
of a network itself, analyzing signals on a network has
attracted much attention and is also a very mature topic.
One very interesting question in this field is the depen-
dence of signal processing techniques on the topology of
the network. Barbarossa et al will present some signal
processing techniques of simplicial complexes.

We end the introduction by citing recent applications
of TDA. The purpose is to illustrate the diversity of
topics where topological signatures can be useful, and
this is by no means a comprehensive list of existing
applications.

Persistent homology, as described in Section II, is
one of the most commonly used tool in TDA. It may
be viewed as a “higher order” analogue of hierarchical
clustering. The reader is directed to two surveys in [10],
[7].

As topological methods provide tools for analysis of
various data shapes, there are several application avenues
in computer vision and image processing. Some of the
examples include graphical representation of gray-scale
images [19], deformation invariant models for digital
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Fig. 2: Figure (a) shows a topological space, and (b)
shows its simplicial complex representation.

images [13], [9], shape segmentation [21] and motion
analysis [24].

As a further illustration of the scope of this topic,
we refer the readers to applications such as comparison
of maps [1], graph comparison [4], localization [18],
text mining [25] and distributed trees for high perfor-
mance computing [14], sensor networks [3], [2], [5], and
robotics [22].

Various books have recently been published in this
area of research, including a great introduction by Edels-
brunner and Harer [6], a concise book by Zomorodian,
[26] a more specific book about computational homology
by Kaczynski, Mischaikow and Mrozek [11], and a more
recent book with a more engineering flavor, by Robinson
[17].

II. BACKGROUND

In this section, we introduce the most commonly used
notions in TDA, which also serves to build a context to
introduce the papers presented in this session.

A. Simplicial complexes

Simplicial complexes are combinatorial representa-
tions of input data, and may be abstractly viewed as
hypergraphs that are closed under the operation of taking
subsets.

Given a set of vertices V = {v0, v1, . . .}, a k-simplex
σ = [v0, v1, . . . , vk] is an ordered list of k + 1 vertices.
We refer to k as the dimension of a k-simplex. Any
subset (without regard to order) of the k + 1 vertices
forming a simplex is called a face of the simplex. Clearly,
each face is also a simplex itself once its vertices are
given an ordering, which may or may not agree with
the ordering from any other simplices. A simplicial
complex K is a set of simplices such that any simplex
in K also has all of its faces in K. (This implies that
the intersection of any two simplices σ1 and σ2 in K
is a face of both σ1 and σ2.) Note that if K only
contains simplices of dimension k ≤ 1, K is a graph
in the classical sense. There are two main advantages
of simplicial complexes, 1) they provide a discrete and

6411



(a) ε0

c1 c2

(b) ε1

c1 c2

(c) ε2

c1 c2

(d) ε3

ε0 ε1 ε2 ε3

(e) barcode

Fig. 3: Figure illustrates the persistent homology compu-
tation given a point cloud. (a) shows a point cloud with
two cyclic structures, which are captured by the birth
and death of the cycles c1 and c2. Both the cycles are
born at (b), c1 dies in (c) and c2 dies in (d). The lifetime
of each cycle indicated the size of the cyclic structure it
corresponds to.

simple representation of continuous topological spaces
(as in Fig. (2)), and 2) the combinatorial-topological
structure is limited enough that it can be algebraically
represented using linear operators.

B. Homology spaces

Given a simplicial complex K, let Ck be abstract
vector space whose basis is the set of k-simplices. (Each
k-simplex is therefore thought of as a basis vector.)
Therefore C0 is built using vertices (0-simplices), C1

using edges (1-simplices) and so on. The boundary op-
erators ∂k : Ck → Ck−1 are functions that algebraically
extract boundaries of each simplex. Each ∂k is given as
∂kσ =

∑k
i=0(−1)i[v0, . . . , v̂i, . . . , vk], where v̂i means

that vertex vi is deleted from the list.
For example, in Fig. (2b), ∂1(e1) = v2 − v1, and

∂2(σ1) = e1+e2+e3. Cycles which are also boundaries
(eg. e1+e2+e3) are considered to be “filled in”. There-
fore, the cycles which cannot be expressed as sums of
boundaries (eg. e4+e5−e1 ) will surround holes. This is
the intuition behind homology spaces, which are defined
as the quotient space Hk(K) = ker(∂k)/image(∂k+1).
In Fig. (2b), H1 is generated by e4 + e5 − e1, which
is a one dimensional space, indicating the presence of a
single hole.

C. Persistence

Given a point cloud and no specifically predefined
scale, it is well known that the clustering problem is ill-
posed [12] and unstable. It is therefore common prac-
tice under these circumstances to perform hierarchical

clustering and provide a multi-scale summaries in the
form of dendrograms. In hierarchical clustering, one first
produces a sequence of spaces K0 ⊆ K1 ⊆ · · · ⊆
Km = K and tracks how the connected components
merge together.

Persistent homology may be viewed as analogous
to hierarchical clustering for other topological features
such as holes, voids etc. Since a formal introduction is
beyond the scope of this introductory paper, we use the
example point cloud shown in Fig. (3a) to provide a brief
description of the process.

In the case of clustering, hierarchical clustering fol-
lows the merging of connected components in the graph
as the scale is increased. Analogously, one can follow
the “birth” and “death” of cycles.

As in the case of clustering, we produce a sequence of
spaces by increasing the value of a parameter ε > 0, and
for each ε value, we add all the edges in the Delaunay
triangulation of the point cloud whose length is less than
or equal to ε to obtain Kε. If a cycle c – a nontrivial
element of H1 – appears for the first time at εi, we say
that c is born at εi. We say that c dies at εj if j is the first
time when c can be expressed in terms of boundaries of
triangle and is therefore trivial in H1.

In Fig. (3), at ε1, we see the birth of two cycles
in red: c1 and c2. We see that c1 dies at ε2, and c2
dies at ε3, resulting in the barcode shown in Fig. (3e).
It is straightforward to infer from the barcode that the
point cloud exhibits two cyclic structures, one of which
is larger than the other. For the sake of concreteness,
we will now provide some algebraic background which
gives rise to these bars.

For a triangulation Kε, as in Fig. (3), the basis
elements of H1(Kε) are equivalence classes of cycles
in Kε. Each cycle is an element of the kernel of the
boundary map ∂1. For example, the equivalence class of
[c1] 6= 0 in Kε1 , whereas [c1] = 0 in Kε2 . Also, since ε1
is the smallest value for which [c1] = 0, we say that [c1]
persists in the interval [ε1, ε2), and this is represented
as bar from ε1 to ε2 in the output. More generally, the
homology which persists in the interval [a, b] is given
by image

(
H1(Ka)

i∗−→ H1(Kb)
)

, where i∗ is the map
induced by the inclusion i : Ka → Kb. In other words,
the number of bars in any interval [a, b] in the barcode is
equal to the dimension of image

(
H1(Ka)

i∗−→ H1(Kb)
)

.
From a data analysis perspective, each bar of interval

[a, b] in the barcode corresponds to a cyclic structure
which is present in the triangulations corresponding to
thresholds in that interval.
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III. APPLICATIONS

In this section we give a brief description of the papers
presented in this session, which fall into three broad
categories, 1) signal processing, 2) unsupervised learning
and 3) signatures for networks and metric spaces.

A. Signal processing

Many classical signal processing techniques rely on
transforming the time domain signal into some other
domain (fourier, wavelet, etc.). Recently, another per-
spective has come to light [20] where one converts a
time signal into a point cloud using delay embedding,
or more generally, sliding window embedding. Some
properties of the signal such as periodicity or quasi-
periodicity show up in the resulting point cloud as cyclic
structure which can then be analyzed using persistent
homology as described in Section II. The advantages of
such a procedure is that it reduces the complexity for
certain applications, and increases robustness [8], [16],
[15].

In the paper “Persistent homology of toroidal sliding
window embeddings”, Perea introduces the topological
analysis of signals exhibiting quasi-periodic behavior.
He studies the persistent homology of sliding window
embeddings for sums of harmonics with incommensurate
frequencies, in which case the resulting sliding window
point-clouds are (dense in) high-dimensional tori. He
also proves theorems which guide the choice of win-
dow size and embedding dimension, and describe the
associated persistent homology.

The paper “ Uncertainty Principle and Sampling on
a Graph of arbitrary Topology” looks at another funda-
mental question of signal processing, that of sampling
principles for signals on arbitrary domains (as opposed
to linear time domains in classical signal processing, or
regular grids as in image processing). As described in
Section II, simplicial complexes can be used to represent
a very broad set of spaces. Building on their work
on sampling theorems for graphs [23], Barbarossa et
al develop sampling theorems for signals on simplicial
complexes.

B. Unsupervised learning

In the paper “Overlapping clustering of networked
data using cut metrics”, Gama et al present a novel
method to hierarchically cluster networked data, i.e.
a set of nodes endowed with a pairwise dissimilarity
function, allowing nodes to simultaneously belong to
multiple clusters. Traditional clustering algorithms out-
put a partition of the node set such that a node belongs

to exactly one subset or cluster. However, in many
situations there are nodes that are hard to classify in any
given cluster, or that might legitimately belong to more
than one category due to having strong similarities with
multiple groups. They accommodate for these situations
by proposing a method to obtain a nested collection of
overlapping clusters. More specifically, given a network,
their method outputs a cut metric on the underlying node
set, which can be related to data coverings at different
resolutions. The cut metric is obtained by averaging a set
of ultrametrics, which are themselves the output of (non-
overlapping) hierarchically clustering noisy versions of
the original network of interest. The resulting algorithm
is applied to three synthetic networks as well as to
the problem of clustering handwritten digits from the
MNIST database.

Manifold learning is another major part of unsuper-
vised learning, where the primary assumption is that
the data is sampled (with noise) from an underlying
manifold. It is quite possible that this assumption is not
satisfied in practice, and dealing with more complicated
scenarios such as stratified manifolds is challenging. In
“TBD”, Fasy et al show how a variation of persistent
homology, called the local persistent homology can be
used to classify data points into different strata.

C. Signatures for networks and metric spaces

Networks which show the relationships within and
between complex systems are key tools in a variety of
current scientific areas. A central aim in network analysis
is to find a suitable metric for network similarity and
comparison. In “Distances between directed networks
and applications”, Memoli et al present their work on
1) defining notions of dissimilarity between directed
weighted networks, 2) using this distance for studying
the network reconstruction problem from partial mea-
surements, 3) computing succinct summaries/invariants
of the networks, like hierarchical clustering dendrograms
and statistics over subnetworks, and 4) computing esti-
mates of the proposed distance between two networks via
the comparison of respective network signatures – a task
that often leads to computationally simpler problems.

From an another perspective of comparing networks,
Fasy et al use local persistent homology to define a local
distance between road networks. One can then integrate
this distance to get a global picture of the distance, or
can plot the distances like an image in order to determine
where the differences between the two graphs lie.
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