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ABSTRACT

We consider stochastic motion planning in single-source single-
destination robotic relay networks, under a cooperative beam-
forming framework. Assuming that the communication medium
constitutes a spatiotemporal stochastic field, we propose a 2-stage
stochastic programming formulation of the problem of specifying
the positions of the relays, such that the expected reciprocal of their
total beamforming power is maximized. Stochastic decision mak-
ing is made on the basis of random causal CSI. Recognizing the
intractability of the original problem, we propose a lower bound re-
laxation, resulting to a nontrivial optimization problem with respect
to the relay locations, which is equivalent to a small set of simple,
tractable subproblems. Our formulation results in spatial controllers
with a predictive character; at each time slot, the new relay positions
should be such that the expected power reciprocal at the next time
slot is maximized. Quite remarkably, the optimal control policy to
the relaxed problem is purely selective; under a certain sense, only
the best relay should move.

Index Terms— Network Mobility Control, Cooperative Net-
works, Mobile Relay Beamforming, Stochastic Programming

1. INTRODUCTION

Cooperative beamforming constitutes a powerful method for infor-
mation relaying in multi-hop networks. It is well known to greatly
improve communication reliability by increasing directional channel
gain, enabling low power, long distance transmissions with fewer
hops, and with minimal interference [1, 2, 3]. In Amplify-and-
Forward (AF) beamforming, which is considered here due to its
simplicity [1], typically, the objective is to determine source power
and/or relay beamforming weights so that certain optimality criteria
are met, such as Quality-of-Service (QoS) at the destinations, or
transmit power at the relays [1, 2, 3]. This optimization procedure
critically depends on availability of Channel State Information (CSI)
at the relays. In the literature, CSI is mostly assumed either known
[2, 4, 5], or unknown with known statistics [1, 6, 7, 8, 9, 10], with
the latter assumption better reflecting reality.

Recently, there has been works which exploit mobility of the
relays assisting the communication, in order to further enhance
performance in beamforming networks. In [11], mobility control
has been combined with optimal transmit beamforming for transmit
power minimization, while maintaining QoS in multiuser coopera-
tive networks. Also, more recently [12], under a slightly different
formulation, in the context of information theoretic secrecy, de-
centralized mobility control has been jointly combined with noise
nulling and cooperative jamming for secrecy rate maximization in
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mobile jammer assisted cooperative communication networks with
one source, one destination and multiple jammers. In the above
works, the communication channels among the entities of the net-
work (or the related second order statistics) have been assumed to be
fixed during the whole motion of the relays. However, this assump-
tion might be restrictive in scenarios where the channels change
dynamically/stochastically through time and space.

In this paper, we present a novel treatment of the basic AF
single-source single-destination relay beamforming problem, un-
der the fundamental assumption that the channel, on the basis of
which control decisions are determined, constitutes a spatiotempo-
ral stochastic process. More specifically, we consider a time slotted,
spatially controlled communication system, where, at each time
slot, both communications and relay motion take place. Under this
model, we propose a 2-stage stochastic programming formulation
of the problem of specifying the positions of the relays, such that
the reciprocal of their total beamforming power is maximized on
average, based on causal CSI. The proposed formulation results in
relay spatial controllers with a predictive character; at each time slot,
the decision on the new positions should be such that the expected
power reciprocal, occurring at the next time slot, is maximized.
Due to the intractability of the original problem, we propose a lower
bound relaxation, which provably results to a nontrivial optimization
problem with respect to the positions of the relays. Under a realistic
“log-normal” wireless channel model [13], the relaxed problem is
equivalent to solving a set of two dimensional, computationally
tractable subproblems. Quite remarkably, the optimal control policy
to the relaxed problem is purely selective; under a certain sense, only
the best relay should move.

2. SYSTEM MODEL

On a closed planar region S ⊂ R2, we consider a wireless coopera-
tive network consisting of one source, one destination and R ∈ N+

assistive relays. Each entity of the network is equipped with a sin-
gle antenna, being able for both information reception and broad-
casting/transmission. The source and destination are stationary and
located at pS ∈ S and pD ∈ S, respectively, whereas the relays are
assumed to be mobile; each relay i ∈ N+

R moves along a trajectory
pi (t) ∈ S, where, in general, t ∈ R+. We also define the supervec-

tor p (t) ,
[
p
T
1 (t) p

T
2 (t) . . . p

T
R (t)

]T
∈ SR. Additionally, we

assume that the relays can cooperate with each other, either in terms
of local message exchange, or by communicating with a local fusion
center, through a dedicated channel.

Assuming that a direct link between the source and the destination
does not exist, the role of the relays is determined to be assistive to
the communication, in a classical two phase AF sense. Fix a T > 0,
and divide the time interval [0, T ] into NT time slots, with t ∈ N+

NT
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denoting the respective time slot. Let s (t) ∈ C, with E
{
|s (t)|2

}
≡

1, denote the symbol to be transmitted at time slot t. Also, assum-
ing a flat fading channel model, as well as channel reciprocity and
quasistaticity in each time slot, let the sets {fi (pi (t) , t) ∈ C}

i∈N+
R

and {gi (pi (t) , t) ∈ C}
i∈N+

R
contain the random, spatiotemporally

varying source-relay and relay-destination channel gains, respec-
tively. Then, if P0 > 0 denotes the transmission power, during
AF phase 1, relay i receives the amplified symbol

√
P0s (t), modu-

lated by fi (pi (t) , t), plus an additive, spatiotemporally white noise

component ni (t) ∈ C, with E
{
|ni (t)|2

}
≡ σ

2, for all i ∈ N+
R.

During AF phase 2, all relays simultaneously retransmit the infor-
mation received, each modulating their received signal by a weight
wi (t) ∈ C, i ∈ N+

R. The signal received at the destination can be
expressed as the superposition of the weighted relay signals, plus
another spatiotemporally white noise component nD (t) ∈ C, with

E
{
|nD (t)|2

}
≡ σ2

D .

In the following, whereas it is assumed that the stochastic pro-
cesses fi (pi (t) , t) and gj (pt (t) , t) may be statistically depen-
dent both spatially and temporally, for all (i, j) ∈ N+

R × N+
R,

it is also assumed that, as usual, the random processes s (t),[
{fi (pi (t) , t) , gi (pi (t) , t)}

i∈N+
R

]
, ni (t) for all i ∈ N+

R, and

nD (t) are mutually independent. Lastly, we will assume that,
at each time slot t, the magnitudes of {fi (pi (t) , t)}

i∈N+
R

and
{gi (pi (t) , t)}

i∈N+
R

are known exactly to all relays. This may be
achieved through pilot based estimation and is a valid practical
assumption. See, e.g., [13] and the respective authors’ related work.

3. WIRELESS CHANNEL MODELING

At each time slot t ∈ N+
NT

, the i-th source-relay channel gain can
be decomposed as [14]

fi (pi (t), t) ≡ fPL(pi (t))︸ ︷︷ ︸
path loss

f
SH
i (t)︸ ︷︷ ︸

shadowing

f
MF
i (t)︸ ︷︷ ︸
fading

e
J

2πdiS(t)

λ , (1)

where J ,
√
−1, λ > 0 denotes the wavelength employed for the

communication, and where: 1) fPL (pi (t)) , ‖pi (t)− pS‖
−`/2
2

, (diS (t))
−`/2, where ` > 0 denotes the path loss exponent.

2) fSHi (t) ∈ R denotes the shadowing part of the channel, whose
square is a base-10 log-normal random variable with zero location.
3) fMF

i (t) ∈ C represents multipath fading, which is assumed to
be an unpredictable, spatiotemporally white [13], strictly stationary
process with known statistics. In particular, its phase, φfi (t), is as-
sumed to be a white noise process uniformly distributed in [−π, π],
also independent of its magnitude.

Now, since the complex exponential in (1) is known, let us sub-
stitute fi (pi (t) , t)← exp (−J2πdiS (t) /λ)fi (pi (t) , t). Instead
of working with the multiplicative model described by (1), it is much
preferable to work in logarithmic scale. We may then define

Fi (pi (t) , t) , α
i
S (pi (t)) `+ σ

i
S (t) + ξ

i
S (t) , ∀i ∈ N+

R (2)

and ∀t ∈ N+
NT

, where αiS (pi (t)) , −10 log10 (diS (t)), σiS (t) ,

10 log10

(
f
SH
i (t)

)2

and ξ
i
S (t) , 10 log10

∣∣∣fMF
(pi (t) , t)

∣∣∣2,

with (·) denoting the zero mean version of a random variable. Of

course, we may stack all the Fi (pi (t) , t)’s defined in (2), resulting
in the vector additive model

F (p (t) , t) , αS (p (t)) `+ σS (t) + ξS (t) ∈ RR×1
, (3)

where αS (t), σS (t) and ξS (t) are defined accordingly. We can
also defineG (p (t) , t) , αD (p (t)) `+σD (t)+ξD (t) ∈ RR×1

,
with each quantity in direct correspondence with (3).

The spatiotemporal dynamics of {fi (pi (t) , t)}i and
{gi (pi (t) , t)}i are modeled through those of the shadowing
components of {Fi (pi (t) , t)}i and {Gi (pi (t) , t)}i. It is ba-
sically assumed that for any subset of t’s, the composite process[{
F

T
(p (ti) , ti) G

T
(p (ti) , ti)

}
i∈N+

N

]T
is jointly Gaussian

with known means and known covariance matrix. More specifically
[13], ξiD(S) (t)

i.i.d.∼ N
(

0, σ
2
ξ

)
, for all t ∈ N+

NT
and i ∈ N+

R [15].
Second, extending Gudmundson’s model [16] in a straightforward
way, we propose defining the spatiotemporal correlations of the
shadowing part of the channel as

E
{
σ
i
S (k)σ

j
S (l)

}
, η

2
e
−
‖pi(k)−pj(l)‖2

β
− |k−l|

γ , (4)

and correspondingly for
{
σ
i
D (t)

}
i∈N+

R

, and additionally,

E
{
σ
i
S (k)σ

j
D (l)

}
, E

{
σ
i
S (k)σ

j
S (l)

}
e
−
‖pS−pD‖2

δ , (5)

for all (i, j) ∈ N+
R×N+

R and all (k, l) ∈ N+
NT
×N+

NT
. In the above,

η
2 and β > 0 are called the shadowing power and the correlation

distance, respectively. In this fashion, we will call γ > 0 and δ > 0
the correlation time and the BS (Base Station) correlation, respec-
tively. For later reference, let us define the (cross)covariance matri-
ces ΣSD (tk, tl) , E

{
σS (tk)σ

T
D (tl)

}
+1{S≡D}1{tk≡tl}σ

2
ξIR

∈ SR+(+), as well as Σ (tk, tl) , [ΣSS (tk, tl) ΣSD (tk, tl) ;

ΣSD (tk, tl) ΣDD (tk, tl)] ∈ S2R
+ .

4. MOBILE BEAMFORMING

At each time slot t ∈ N+
T and assuming the same carrier for all com-

munication tasks, we employ a basic joint communication/decision
making TDMA-like protocol, as follows: 1) The source broadcasts
a pilot signal to the relays, which then estimate the channel magni-
tudes relative to the source. 2) The same procedure is carried out for
the channel magnitudes relative to the destination. 3) Then, based on
the estimated CSI, beamforming is implemented. 4) Finally, based
on the CSI received so far, the spatial controllers of the relays are
determined, implementing accurate stochastic decision making.

In the following, let {C (Tt)}t∈N+
NT

denote the set of channel

magnitudes observed by the relays, along the path of their point tra-
jectories Ti , {p (t)}

t∈N+
i
, i ∈ N+

NT
, where Tt ≡ {Tt−1,p (t)}.

Further, it is assumed that the motion of the relays obeys the differ-
ential equation ṗ (τ) ≡ u (τ), for all τ ∈ R+. Apparently, relay
motion is in continuous time. However, assuming the relays move
only after their controls have been determined and up to the start of
the next time slot, we can write

p (t) ≡ p (t− 1) +

ˆ
∆τt−1

ut−1 (τ) dτ, ∀t ∈ N+
NT
, (6)
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with p (1) ≡ pinit, and where ∆τt ∈ R denotes the time interval
that the relays are allowed to move in each time slot t ∈ N+

NT
. Of

course, at each time slot t, ∆τt must be sufficiently small such that
the temporal correlations of the CSI at adjacent time slots are suffi-
ciently strong. These correlations are controlled by the correlation
time parameter δ, which can be a function of the slot width. There-
fore, the velocity of the relays must be of the order of (∆τt)

−1. In
this work, though, we assume that the relays are not resource con-
strained, in terms of their robotic operation. See Fig. 1 for a block
representation of the proposed joint beamforming and relay motion
control schema, where It contains the available CSI at time slot t
and {·, ·} denotes the concatenation operation.

4.1. 2-Stage Stochastic Optimization of Beamforming Weights
& Relay Positions

Suppose that, at time slot t − 1, an oracle reveals C (Tt), which
of course includes the channels corresponding to the new positions
of the relays at the next time slot t. Then, given C (Tt), we are
interested in determining w (t) , [w1 (t) w2 (t) . . . wR (t)]

T , as
the solution of the power reciprocal maximization program

maximize
w(t)

(E {PR|C (Tt)})
−1

subject to
E {PS |C (Tt)}

E {PI+N |C (Tt)}
≥ γ

, (7)

where PR, PS and PI+N denote the instantaneous power at the re-
lays, that of the signal component and that of the interference plus
noise component at the destination, and where γ > 0 is chosen such
that (7) is feasible. Note that instead of minimizing the power at the
relays, we are interested in maximizing its inverse, as this facilitates
the formulation of our joint communication-control problem, as fol-
lows. Using the respective mutual independence assumptions, (7)
can be written analytically and equivalently as [1]

maximize
w(t)

(
w

H
(t) D (p (t) , t)w (t)

)−1

subject to
w

H
(t) R (p (t) , t)w (t)

σ
2
D +w

H
(t) Q (p (t) , t)w (t)

≥ γ
, (8)

where, dropping the dependence on (p (t) , t) for brevity,

D , P0diag
([
|f1|

2 |f2|
2
. . . |fR|

2
]T)

+ σ
2
IR ∈ SR++, (9)

R , P0hh
H ∈ SR+, with h , [f1g1 f2g2 . . . fRgR]

T and (10)

Q , σ
2diag

([
|g1|

2 |g2|
2
. . . |gR|

2
]T)

∈ SR++. (11)

Obviously, if the oracle could reveal C ({Tt−1,p (t)}) at t− 1, we
could further optimize the optimal value of (8) with respect to p (t),
representing the new position of the relays. In the absence of the
oracle, though, this is impossible, since given C ({Tt−1}), the chan-
nels at any position of the relays are nontrivial random variables.
However, given C ({Tt−1}), it is reasonable to search for the best
decision on the positions of the relays at time slot t (as a functional
of C ({Tt−1})), such that the optimal value of (8) is maximized, on
average. This results in the 2-stage stochastic program [17]

maximize
p(t)

E {V (p (t) , t)}

subject to C (p (t−1)) 3 p (t) ≡ E {p (t)|C (Tt−1)}
, (12)

wo (t− 1)

@ Time Slot t− 1

Beamforming
Optimization

Relay Controller
Optimization

{|fi| , |gi|}: CSI at
(po (t− 1) , t− 1)

po (t) and
uo
t−1 (τ) , τ ∈ ∆τt−1

{·, ·}It−2 It−1

2nd Stage Problem at t − 1

1st Stage Problem at t

Fig. 1. 2-Stage optimization of beamforming weights and spatial re-
lay controllers. wo

(t− 1), u
o
t−1 (τ) and p

o
(t) denote the optimal

beamforming weights and relay controllers at time slot t− 1 and the
optimal relay positions at time slot t, respectively. Also, I0 ≡ {∅}.

where the random variable V (p (t) , t) (a functional of C (Tt)) de-
notes the optimal value of (8), and C (p (t− 1)) denotes a convex
set, representing a spatially feasible neighborhood around p (t− 1).
Problems (12) and (8) are referred to as the first-stage problem and
the second-stage problem, respectively [17] (also see Fig. 1). In
general, the existence of elegant solutions for 2-stage problems is
extremely rare. Fortunately, however, in our case, the second-stage
problem admits a (semi)closed form solution, expressed as [1]

V =
λmax

(
D
−1/2

(R− γQ) D
−1/2

)
γσ

2
D

,
λmax (B)

γσ
2
D

. (13)

The resulting equivalent form for problem (12) is still difficult to
solve because of two reasons; its variational character and, second,
the fact that the expectation in the objective cannot be computed in
any reasonable and tractable way. By an application of a generalized
form of the fundamental lemma of stochastic control [18, 19], the
first stage problem (12) can be equivalently replaced by the much
simpler problem

maximize
p(t)∈C(p(t−1))

E {λmax (B (p (t) , t))|C (Tt−1)} , (14)

perfectly solving the first issue mentioned above. Regarding
now the second issue arising as a result of the (conditional) ex-
pectation appearing in (14), due to the convexity of the maxi-
mum eigenvalue operator in B, we can use Jensen’s Inequality
in order to lower bound the objective of (14) by the quantity
λmax (E {B (p (t) , t)|C (Tt−1)}), resulting in the lower bound
relaxation

maximize
p(t)∈C(p(t−1))

λmax (E {B (p (t) , t)|C (Tt−1)}) . (15)

Apparently, the challenge now is to properly express the condi-
tional expectation involved as an explicit functional of p (t). In-
terestingly, it can be shown that the random matrix E (p (t)) ,
E {B (p (t) , t)|C (Tt−1)} (where we emphasize the dependence
on p (t)) is diagonal, with elements

Ei , E

{
P0 |fi|

2 |gi|
2 − γσ2 |gi|

2

P0 |fi|
2

+ σ
2

∣∣∣∣∣C (Tt−1)

}
, i ∈ N+

R. (16)

In order to evaluate the conditional expectations in each diagonal
element of E, hereafter, we will assume that 1/

(
P0 |fi|

2
+ σ

2
)
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≈ 1/
(
P0 |fi|

2
)

, for all i ∈ N+
R, corresponding to a high-SNR sce-

nario at the relays. This approximation will be valid if either the
noise power at the relays is small, or the broadcasting power of the
source is relatively large. This situation is reasonable in beamform-
ing networks, since the most suitable network nodes in terms of in-
formation relaying may be selected through a relay selection proce-
dure. Then, (16) becomes

Ei= E
{
|gi|

2
∣∣∣C (Tt−1)

}
− γσ

2

P0

E
{
|gi|

2 |fi|
−2
∣∣∣C (Tt−1)

}
, (17)

for all i ∈ N+
R. In fact, eachEi may be computed in closed form, as

the following result suggests.

Theorem 1. (Conditional Correlations) Under the wireless chan-
nel modeling assumptions of Section 3, it is true that

E
{
|gi|

2
∣∣∣C (Tt−1)

}
≡10

ρ/10
exp

(
log (10)

10
µ
Gi
t|t−1(pi (t))

+
log

2
(10)

200
σ

2,Gi
t|t−1(pi (t))

)
, and

E
{
|gi|

2|fi|
−2
∣∣∣C (Tt−1)

}
≡exp

(
log (10)

10

(
µ
Gi
t|t−1(pi (t))

−µFit|t−1(pi (t))
)

+
log

2
(10)

200

[
1
−1

]T
Σ
Gi,Fi
t|t−1(pi (t))

[
1
−1

])
. (18)

In (18), we define ρ , 10E
{

log10

∣∣∣fMF
(pi (t) , t)

∣∣∣2}, and

µ
Gi
t|t−1 (·),αD (·) `+ c

Gi
1:t−1 (·) Σ

−1
1:t−1

(
m1:t−1−µ1:t−1

)
, (19)

σ
2,Gi
t|t−1 (·),σ2

ξ + η
2 − cGi1:t−1 (·) Σ

−1
1:t−1

[
c
Gi
1:t−1 (·)

]T
,with (20)

c
Gi
1:t−1 (·),

[{
c
Gi
k

}
k∈N+

t−1

]
, (21)

and

m1:t−1,

[{
F

T
(p (j) , j) G

T
(p (j) , j)

}
j∈N+

t−1

]T
, (22)

µ1:t−1,
[
{αS (j) αD (j)}

j∈N+
t−1

]T
`, (23)

Σ1:t−1,

 Σ (1, 1) · · · Σ (1, t− 1)
...

. . .
...

Σ (t− 1, 1) · · · Σ (t, t)

 , (24)

c
Gi
k ,

[{
E
{
σ
i
S (t)σ

j
D (k)

}}
j

{
E
{
σ
i
D (t)σ

j
D (k)

}}
j

]
, (25)

where cGi1:t−1 (·) ∈ R1×(t−1)2R,m1:t−1 andµ1:t−1 are in R(t−1)2R×1

and Σ1:t−1 is in S(t−1)2R
++ , for all t ∈ N+

NT
. In (18), we have

Σ
Gi,Fi
t|t−1 (·) ≡

 η
2

+ σ
2
ξ η

2
e
−
‖pS−pD‖2

δ

η
2
e
−
‖pS−pD‖2

δ η
2

+ σ
2
ξ


−

[
c
Gi
1:t−1 (·)
c
Fi
1:t−1 (·)

]
Σ
−1
1:t−1

[
c
Gi
1:t−1 (·)
c
Fi
1:t−1 (·)

]T
∈ R2×2

, (26)

and the quantities µFit|t−1 (·) and cFi1:t−1 (·) are defined accordingly,
swapping “D” and “S” where applicable.

Theorem 1 implies that (17) can be explicitly expressed in terms
of the available CSI and the related statistics. This is possible due to
the Gaussianity of the log-squared magnitude of the observed chan-
nels. The proof involves the evaluation of the related conditional
moment generating functions and it is omitted due to lack of space.

From (18), one can observe that (17) is a well defined functional
of pi (t), that is, Ei ≡ Ei (pi (t)), for all i ∈ N+

R. Additionally, as
it was expected, each Ei is independent of all pj (t) , j 6= i. Under
these circumstances, the program under consideration, described by
(15), can be expressed as the maximization of Ei (pi (t)) jointly
over p (t) ∈ C (p (t− 1)) and i ∈ N+

R, which is equivalent to

max
i∈N+

R

[
max

pi(t)∈C(pi(t−1))
Ei (pi (t))

]
. (27)

In particular, each of the R two dimensional problems involved can
be performed locally at each relay, provided the availability of com-
mon global information (channel magnitudes and relay positions).

Quite remarkably, the discussion above reveals that the optimal
control policy is of a purely selective form: At each t ∈ N+

NT
and

provided that the inner problem of (27) can be solved exactly, only
the io-th relay should move, where io is the respective solution of
the outer maximization of (27); in fact, either any of the rest of the
relays moves or not is irrelevant.

4.2. Determination of Relay Motion Controllers

What remains now is to determine the controllers of the io-th relay,
selected to carry out the decision that optimizes the relaxed cost of
(15). Suppose that p

o
(t) ∈ arg max

pi(t),i

Ei (pi (t)) has been deter-

mined, for instance, numerically. Then, it suffices to fix a path in S,
such that the points p

o
(t) and pio (t− 1) are connected in at most

time ∆τt. By far the easiest choice for such a path is the straight line

connecting p
o

(t) , [x
o
t y

o
t ]

T and pio (t− 1) ,
[
x
i
o

t−1 y
i
o

t−1

]T
.

Therefore, we can choose the optimal relay motion controller as

u
o
t−1 (τ) ,

1

∆τt−1

[
y
o
t − y

i
o

t−1

x
o
t − x

i
o

t−1

]
, τ ∈ ∆τt−1, (28)

completing the presentation of the proposed solution to the mobile
beamforming problem under consideration.

5. CONCLUSION

We have considered the problem of stochastic relay spatial control
for beamforming optimization in single-source single-destination
robotic relay networks. Under a realistic spatiotemporal stochas-
tic model for the communication medium, we proposed a 2-stage
stochastic programming formulation for specifying relay spatial
controllers, such that the future expected reciprocal of their total
beamforming power is maximized, based only on causal CSI at the
relays. Due to the intractability of the original problem, we have
proposed a lower bound relaxation, which is equivalent to a set of
tractable two dimensional subproblems, solved at each relay inde-
pendently. Interestingly, the aforementioned formulation results to a
relay selection plus control scheme; at each time slot, only one relay
should move - the one resulting to the highest expected beamforming
improvement. This work essentially serves as a basis for several ex-
tended formulations of the mobile beamforming problem and more
generally of related problems in spatially controlled communication
systems; these constitute the subject of current research.
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