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ABSTRACT

The problem of active target detection using low rank methods
is explored. In prior work, a strategy was proposed based on
matrix completion for randomly sampling a field combined
with binary search to localize a target. Herein, two innovations
are explored: the consideration of tensor-completion in order
to exploit multi-modal data and the examination of the costs
associated with communication. In particular, the random
samples are collected in neighborhoods wherein the quality of
the observation is a function of the distance of the sampling
point to the centroid of the neighborhood. Due to the tradeoff
between communication quality and sampling quality, there is
an optimal neighborhood size.

Index Terms— target detection, rank-one matrix com-
pletion, low-rank tensor completion, exploration-exploitation
tradeoff, communication costs

1. INTRODUCTION

The identification of the location of a phenomenon of interest,
a target, is needed in a variety of applications such as surveil-
lance, anomaly detection, cyber-security, medical imaging and
environmental monitoring. In a prior series of works [1,2],
we have examined the use of low-rank matrix completion [3]
to derive an algorithm that does not need the knowledge of
the target field decay profile, by exploiting the a priori as-
sumption that the field in question is separable. By combining
this approach with binary search, an active target localization
algorithm was formulated. An analytical tradeoff between the
sampling complexity and the target localization error, in the
presence of noise, was provided under the assumption of a
spatially uniform random sampling strategy.

Herein, we make two extensions. First, we tackle multi-
modal data. That is, imagine that the vehicle is sampling mul-
tiple sensor systems at each location (acoustic, chemical, etc.).
As a result, there is a concatenation of maps from which target
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Fig. 1: Depiction of multi-modal maps.

localization should occur. A depiction of this environment is
provided in Figure 1. Applying our previous methodology, we
are now interested in tensor completion versus matrix com-
pletion. However, there are challenges to the consideration of
tensor completion. In contrast to sparse approximation or low-
rank approximation of a matrix, for many low-rank equivalent
decompositions of tensors (such as the Kronecker decomposi-
tion), r-term approximations may not form a closed set [4, 5]
and many related optimizations are NP-complete [6,7]. The
definition of rank is also up to interpretation and dependent
on the decomposition. Second, we consider the impact of the
communication channel on the tensor completion. For this
evaluation, we provide a modified sampling strategy.

Thus, a novel tensor based field model for incorporating
multiple fields jointly for detecting the target location is de-
veloped. Using low-rank tensor completion methods in this
framework, we design a hierarchical target localization al-
gorithm We further show through numerical simulations the
advantages of using the tensor model over using data from
individual fields separately for target detection. It is seen that
the detection probability improves by 10% when the number
of samples is less than 20%. For a given detection probability
of 80%, our model requires only half the number of samples
as compared to target recovery using each field separately. Fur-
thermore, if the quality of communication is considered, there
is an optimal sampling radius to be considered for minimizing
reconstruction error.

ICASSP 2016



1.1. Related Work
Target detection has been a persistently active area of work;
[17] surveys methods that assume availability of the full tar-
get field/signature. A form of active localization is related
to the exploration-exploitation tradeoff and path planning in
robotics [19,20]. In particular, [20] uses compressed sensing,
via greedy optimization of the empirical restricted isometry
measure) for field reconstruction (versus localization) with
an emphasis on the impact of navigation costs and stopping
times in contrast to the work herein. While distilled sensing
(e.g. [21]) has a similar algorithmic philosophy to the work
here; therein the field is assumed to be sparse rather than low-
rank, and are thus sensitive to basis mismatch errors which are
not a factor in the current approach

While there has been a flurry of recent work on tensor
completion, much of it is not truly multi-modal in nature (e.g.
hyperspectral data [12, 13] or video imagery (e.g. [10,11]) or
is completely agnostic to how the underlying tensor is created
[2,14].

1.2. Notation

We use lowercase boldface alphabets to denote column vec-
tors (e.g. z) and uppercase boldface alphabets to denote ma-
trices (e.g. A). The MATLAB® indexing rules will be used
to denote parts of a vector/matrix (e.g. A(2 : 3,4 : 6) denotes
the sub-matrix of A formed by the rows {2, 3} and columns
{4,5,6}). The all zero, all one and identity matrices shall be
respectively denoted by 0, 1 and I with dimensions dictated by
context. (-)* denotes the transpose operation and (-, -) denotes
the standard inner product on R™. The functions ||| and |||,
respectively return the Frobenius and nuclear norms of their
matrix argument. The function |-| applied to a scalar (repec-
tively a set) returns its absolute value (respectively cardinality).
The symbol ® represents the vector outer product.

2. PRELIMINARIES

We focus on three dimensional tensors (see [8]) , which are
multi-dimensional arrays, or given our application, the con-
catenation of matrices. In order to describe a low-rank tensor,
we focus on the CANDECOMP/PARAFAC, or CP, decom-
position which factorizes into a sum of rank one tensors (see
e.g. [9,22]) For example, a third-order tensor x € RI*/*K
which admits a CP decomposition can be written as,

R
X~Y a, @b, e, M

r=1

where R is a positive integer and a,, € R’, b, € R”, and
¢, € R¥ forr = 1,..., R. Each element of the tensor can be
written as follows,

R
Xijk & Y Qirbjrcrr Vi, §, k )

r=1

A = [al as ... aR],B = [bl bz bR], and C =
[c1 c2 ... cg] are called the factor matrices of the tensor
X-

For our tensor completion problem, out of I.J K entries of
an order-three tensor 7' € RI*7*X et a subset ) be revealed.
We use Pq(T) to denote projection onto the revealed set such
that:

Tijka if (imja k) €N
0, otherwise

Po(T) = { 3)

The problem of low-rank tensor completion can be stated as:

minimize rank(7")

T

. “)
subjectto  Pq (T) =Pqo(T)

However, even computing the rank of a tensor is NP-hard

in general, where the rank is defined as the minimum R for

which the CP-decomposition exists. So we instead fix the rank

. . R
of T by explicitly modelling itas 7T = Y a, ® b, ® ¢, and
r=1

solve the following problem:

2
_minimize HPQ (T) — Pa(T) H (5)
T,rank(T)=R F

We employ alternating minimization to solve the non-
convex problem above; this is a block coordinate descent
method in which we minimize the objective function of Prob-
lem (5) with respect to each of the factor matrices alternately
while keeping the others fixed [23]. Alternating minimization
can get mired in local minima, underscoring the necessity for
good initialization. To this end, we use the Robust Tensor
Power Method (RTPM) [24], which yields a provably good
approximate orthogonal tensor decomposition, to initialize the
factor matrices.

3. PROBLEM DESCRIPTION

We shall make assumptions on the target field present in each
plane (matrix) of the tensor.

3.1. Target Field Assumptions

Without loss of generality and for clarity, we assume that the
target is located at the origin and noise is absent. However,
in our simulations, we will not make these assumptions. We
will consider two planar fields with distinct target signatures.
Let the search region be the two dimensional unit square, and
Y = (Ye,yr) € [0,1]* denote an arbitrary location in the
search space. Let H;: R? — R and Hy: R? — R denote the
scalar valued fields of the same target. We shall make the
following key assumptions on the fields H;(y) and Hz(y):

(A1) Both the fields are separable in some known basis of R2,
independent of the true location of the target.
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(A2) The magnitude of the fields, |H1(y)| and |Hz(y)] is a
monotonically non-increasing function of the distance
from the target in every direction [1,2].

(A3) H,(y)and Hz(y) are spatially invariant relative to the
target’s position.

We assume separability of Hy(y) and Hy(y) in the y. and
y, directions (i.e. in the canonical basis {[1, 0], [0, 1]}) as per
(A1l). This means that there exist functions F;: R — R and
G,i: R — R such that H;(y) = F;(y.)Gi(:), V(ve, ) € R?
fori € {1,2}.
Assumption (A2) is intuitively clear and can be mathematically
described by the inequality:

|H;(t1(y — yo))| > [Hi(t2(y —wo))l, i €{1,2}, (6)

holding Vy € R?,t, > t; > 0, where yg represents the un-
known location of the target. This assumption hence implies
that the peak in each of the fields is at the target’s location.
Assumption (A3) implies that if the target were moved from
Yo to a new position y(,, then the new fields at location y
would be given by H;(y — y, + Yo), @ € {1, 2}, thus ensur-
ing that (A1) holds in the canonical basis, regardless of the
target’s position yq.

3.2. Formulation

By virtue of assumption (A2), detecting the target is synony-
mous with locating the peak of the induced field. In light of
our assumptions, we can state the target detection problem as
the following task: 7o determine the location of the peak in
the fields H1(y) and Hy(y) from their values in only a few
locations y € [0, 1]2. We employ the [ifting technique from
optimization to demonstrate that the separability assumption
(A1) implies a rank one structure on each of the fields.

Let H;(y) = F;(ye)Gi(y), ¢ € {1,2} be the canonical
separable representation of the target fields and let H; denote
a high resolution discretized version of H;(y) on the n X
n regular grid V € [0,1]°. Let V = {vy2, ... yt} x
{yd,y2,...,y"} be the representation of the grid. The set of
all possible sampled values of the field on the set V is given

by {HZ (yg, yrj) ‘ (y;, yﬁ) € V} and can be arranged in the

form of the rank one matrix H; € R™*™, whose (i, )" entry

H;(i,5) = Hi (., v]) = F; (y0) Gi (v]). (N

where (yé,y# ) is the physical location of the (¢, j)th point
in V. The matrix H; is clearly of rank one since we
can express it as the outer product H; = fig] where
the vector f; = [Fz(ycl)7Fl(yC2),7Fz(ygl)]T and g; =
(Gi(yd),Gi(¥?). - .,G,»(yr")]T Without loss of general-
ity, we assume that both y!,y2,...,y" and yl, 2, ... 4"
are sorted in ascending order, corresponding respectively to

traversing the grid from top to bottom and from left to right.
Because of the preceding derivation, we can refer to H; as the
target field with a slight abuse of terminology. Consequently,
we can consider V in a rescaled sense to refer to the set of
index pairs {1,2,...,n}> for the matrix H;.

Let the order-three tensor 1" be formed by stacking the two
scalar valued fields Hy and Hs such that: T'(4, j, 1) = H; (4, j)
and T'(4, j,2) = Ha(i, 7). Since both the fields have the same
peak location and similar decay profiles, the tensor will have
approximately rank-one structure in the third dimension. How-
ever, the deviation from a rank-one tensor will impact recon-
struction performance. This effect is studied in Figures 3a and
3b.

4. SAMPLING AND RECONSTRUCTION

We will assume H; and H» are positive scalar fields. The field
is assumed to be on an n X n grid.

4.1. The Reconstruction Algorithm
Let the first round of sampling be on the Cartesian product
of the index sets 7., 7. C {1,2,...,n},Tx = {1,2} such
that |7;| = |7;] = m with m < n. We will denote this
Cartesian product by the sub-tensor 7'(7, 7, Tx). Without
loss of generality, assume that the indices in 7. , denoted
by 7.(1),7:(2),...,7T:(|7c]) are in increasing order and for
notational convenience we shall let 7.(0) = 1 and 7.(|7.| +
1) = n to denote the boundary indices of each of the field
grids.

Let  be the sampled set on the sub-tensor (7., 7, Tr)-
Using the alternating minimization algorithm, we fit a rank-one
CP model by solving the following problem:

HPQ <T) — Po(T(Te, Trs 7;))”1 ®)

_minimize
T,rank(T)=1

The rank-one reconstruction can be written as T(TC7 Ty Tk) =
a ® b ® c. Let the largest magnitude element of a be at
index jo € {1,2,...,|7.|} and that of b be at index iy €
{1,2,...,|7|}. The next round of sampling is on the Carte-
sian product of the index sets 7. C {7.(jo — 1), ..., Te(jo +
LT C{T-(io—1),...,Tr(io+1)}, T = {1,2} such that
[TZ] = |7 = m' withm’ < n.

4.2. Effect of Communication Channel

We next examine the impact of communication quality on the
probability of target detection. To do so, we modify the sam-
pling model. A sampling radius is selected and within this
region, || uniformly random samples are considered; there
are N, sampling centers that are themselves, uniformly ran-
domly selected. The sampling budget |€2|. Thus, the number
of samples collected is N.|Q2| In simulations, we will examine
the effect of varying the radius size.
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An additional consideration that is relevant is the limited
communication range of the sampling agent from the cen-
ter. The noise induced by the channel on the observations
transmitted by the sampling agent depends on the distance
to the closest sampling center. If x; is the field intensity at
a location [;, the sampled value z; would be: 2; = x; + n;
where n; ~ N(0, f(min,(||l; — ¢;||))) and f(-) is a mono-
tonically increasing function which captures the attenuation
in signal as a function of range often experienced in wireless
systems [25,26]. We will see that there is a tradeoff between
the effects of the noise, which increase with the radius size
and how uniformly we sample the region which improves with
the sampling radius.

5. SIMULATIONS

We consider two 100 x 100 Gaussian matrices as the target
fields of the form:

A
Gi(i,j) = Cre 2%, k=1,2
Both the fields peak at the same location but have different
spread factors o1 and o2. These two matrices are stacked to-
gether to form a tensor; however, this tensor is not rank-one
unless 01 = 03. Our proposed tensor completion method is
compared to the case of performing matrix completion on each
map/plane individually and then averaging the two selected
peaks; this performance is shown in Figure 2 where it is clear
that the joint method based on tensor completion achieves a
better probability of detection. The fact that a larger ratio of
spreads o1 /09 implies that the tensor is further away from
rank-one is shown in Figure 3a, where the distance from a
rank-one tensor is shown and correlates with the detection
performance shown in Figure 3b, i.e. the further away from
rank-one the tensor is, the worse the detection performance.
The distance is the normalized error between the true tensor
and the rank-one approximation. Finally, we consider the
effect of the communication channel via the multi-agent sam-
pling strategy described in Section 4.1. Figure ?? reveals the
predicted tension. When the sampling radius is small; sam-
ples are received with low noise. However, the samples are
spatially concentrated and thus the overall field of interest is
not uniformly sampled. If the sampling radius is too large,
the field is well-sampled, but the samples near the edge of the
sampling regions have more noise. Thus, there is an optimal
radius that balances between these two effects.

6. CONCLUSIONS

In this work, we have extended our prior strategy for active tar-
get detection via matrix completion to a multi-modal sensing
environment. In this case, the object to be searched is a tensor
of three dimensions. Each plane of the tensor corresponds
to under sampled matrices whose components correspond to
the sensor signal. As in our prior work, we only require that
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—— Individual matrix recovery
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Fig. 4: Probability of target localization versus radius size.

each sensor modality result in a matrix that is low rank in the
absence of noise. Thus, we do not need to know the signa-
ture of the target for each sensor modality. It shown that the
tensor approach improves upon localization using each sensor
modality separately and then combining, i.e. a joint approach
is better. We further show that there is an optimal radius size
when considering the quality of samples collected by multiple
agents. The size of the sampling radius impacts the quality
of the measurements but also how uniformly the field can be
sampled. Small radii imply good quality measurements, but a
less uniformly sampled field; hence the existence of an optimal
radius. Future work will develop theoretical analyses of these
methods.
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