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ABSTRACT
Accurate coverage maps are an important tool for network plan-
ning and operation but it is often impossible to obtain these maps
completely from measurements. In this paper we describe two new
methods that enable operators to minimize the cost for obtaining a
complete coverage map at high accuracy. Our first method applies
the Singular Value Thresholding (SVT) algorithm to reconstruct a
complete map from a sparse matrix of coverage data. We then use
the Query by Committee (QbC) rationale to identify the areas where
further measurements would maximize accuracy of the completed
map. This second method allows operators to plan their drive tests
such that a given budget is spent at highest efficiency. Our numerical
examples illustrate that our proposed completion technique outper-
forms relevant state of the art and that QbC further enhances recon-
struction accuracy.

Index Terms— coverage maps, radio measurements, drive tests,
matrix completion, adaptive sampling

1. INTRODUCTION

The planning and operation of cellular networks relies to a large de-
gree on accurate coverage maps. For instance, coverage maps are
fundamental for:
• Network planning: For the initial roll-out and to identify

coverage problems during operation.
• Self-Optimizing Network (SON) functions such as: Dy-

namic tilting, optimization of handover, admission control
and radio resource management (RRM) parameters.

• New optimization approaches such as: Anticipatory resource
allocation and pro-active handover.

A coverage map is often given as a set of radio measurements over
discrete geographical coordinates and is typically obtained by drive
tests. However, drive tests are costly, since they require substantial
personal, time and equipment to accurately cover an area of suffi-
cient scale. This cost poorly scales with the area size, which means
that it grows vastly, the larger the studied area becomes.

As a consequence, methods were developed to reduce the num-
ber of drive tests by collecting measurements from the mobile de-
vices in a cellular network [1]. A relatively cost efficient way to
do so is to exploit information from so-called crowd-sourcing appli-
cations. With crowd-sourcing, a user installs an application on an
off-the-shelf Smartphone and returns measurements to a database.
The immediate drawbacks of this approach are:
• Increased signaling overhead, which reduces the users’ data

budget and the battery lifetime of the mobile device.

• Systematic measurement errors due to the wide fluctuation
of the involved Smartphone functions, e.g., radio front-end,
different filtering algorithms, as well as methods and chipsets
for localization.

• Possible manipulation of the database by sending wrong mea-
surements.

As a result, data coming from crowd-sourcing can be unreliable and
can lead to erroneous coverage maps. This increases the need for
alternative ways to reduce the reconstruction cost. To this end, we
will focus on the cost-efficient reconstruction of pathloss maps in
this paper.

Related Work: Accurately characterizing pathloss in wireless
networks is an ongoing challenge [2]. Over the past years, pathloss
models in various types of networks have been proposed and an-
alyzed. Despite the fact that pathloss modeling is useful in many
applications, the deviation between the pathloss, measured in a real
propagation environment, and the one given by the model can be
large [3]. For this reason, learning-based reconstruction has been ex-
tensively studied since it can be tailored to the specific environment
under consideration and give more accurate results. Such measure-
ment-based learning approaches, can be divided in two categories:

• Batch Algorithms: Assume the complete data to be available
before performing the reconstruction algorithm. Reconstruc-
tion based on Support Vector Machines, Gaussian processes
and Kriging-based techniques have been proposed in [4, 5, 6].
Low rank matrix completion has also been employed in the
context of indoor positioning, target detection and data col-
lection in Wireless Sensor Networks, e.g., [7, 8, 9]

• Online Algorithms: Do not require the complete data set to
be available in advance. They assume that the data is received
sequentially, once per iteration step, and update the mapping
function dynamically. In [10], the measurements are received
sequentially and the predictor is improved via a kernel–based
approach.

Contributions: We propose a new method which aims at re-
ducing the costs to reconstruct coverage maps, while maintaining
high accuracy. This is achieved by: a) reconstructing accurately the
pathloss map, by choosing an effective solution from the algorithmic
family of matrix completion, b) identifying areas where measure-
ments maximize the accuracy of the map reconstruction so that to
obtain new samples from these. For the reconstruction, we represent
the map as a sparse matrix having a small number of observed entries
and we complete it using the Singular Value Thresholding (SVT) al-
gorithm. For the identification of the informative areas we follow
the QbC rationale. Numerical examples illustrate that the proposed
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Fig. 1. Example of a coverage map for 7500 m2 of downtown Berlin,
Germany [11]: Pathloss of strongest serving cell in dB, where x1 and
x2 stand for the discrete geographical coordinates.

reconstruction technique outperforms a relevant state of the art tech-
nique and that the QbC enhances the reconstruction results.

2. THE MATRIX COMPLETION PROBLEM

We consider a geographical area, in which a set of measurements in
discrete locations is available to a mobile operator. These measure-
ments could possibly represent received signal strength, interference,
data rate, loss rate, anomalous events, quality of service indicators,
etc. Here, we focus on pathloss measurements and we are interested
in the problem of reconstructing pathloss maps. An example of such
a map is illustrated in Fig. 1. We pose the aforementioned problem as
a matrix completion task, where we represent the area under consid-
eration as a matrix, the entries of which correspond to the pathloss,
and the cells corresponding to the locations.

The task of matrix completion (MC), e.g., [12, 13], is the recov-
ery of a data matrix from a sample of its entries. Formally, given a
matrix P of dimension m× n we have access to k � m · n entries
and the goal is the prediction of the rest unobserved ones. It has been
shown that under certain conditions this can be achieved [14, 12]. In-
tuitively, MC builds upon the observation that if a certain matrix is
structured, in the sense that it is of low rank or of approximate low
rank, then it can be recovered exactly, under some mild assumptions
regarding the positions of the observed entries. This observation will
be our starting point for the reconstruction of the pathloss map.

Due to the regular propagation of a radio wave in unobstructed
environments, pathloss maps exhibit spatial correlation and smooth
patterns1. Hence, they can be well approximated by low rank ma-
trices and a natural choice is to resort to the family of MC algo-
rithms. So, in our problem we first represent the coverage map, of
the geographical area in which we are interested, as a matrix, say
P ∈ Rm×n, with missing entries. This matrix, is used to represent
the physical space, where each cell corresponds to a physical posi-
tion of the spatial space. Furthermore, the value of the coefficient can

1In practice, there are some exception to this rule especially in obstructed
environments, such as cities. These situations will be discussed in Section 3.

be either zero, if the pathloss is unobserved at this position, or equal
to the value of the pathloss measurement when this is available, e.g.,
via a drive test. The problem of estimating the unobserved entries
of the matrix can be summarized as follows: Compute a matrix, A,
which will be of low rank and equal to the observation matrix P in
the set of observed entries, say Ω; that is Aij = Pij , ∀i, j ∈ Ω,
where Pij , Aij is the i, j–th entry of P and A respectively. A way
to do so is to solve the following problem:

min
A

rank(A) (1)

s.t.Aij = Pij , ∀i, j ∈ Ω. (2)

Unfortunately, the rank minimization problem described previously
cannot be solved efficiently, since it is NP-hard [12]. However, it has
been shown, [14], that this problem can be relaxed, solved efficiently
via convex optimization and the resulting solution will be close to the
optimum one. The relaxation of the initial problem can be written as
follows:

min
A
‖A‖∗ (3)

s.t.Aij = Pij , ∀i, j ∈ Ω, (4)

where ‖A‖∗ denotes the nuclear norm of the matrix A with defini-
tion: ‖A‖∗ =

∑min(m,n)
k=1 σk(A), with σk(·) being the i–th larger

singular value. Several techniques have been proposed in the lit-
erature to solve the optimization (3), (4), including Semi Definite
Programming [12], projection based techniques [15], just to name a
few. Here we follow an iterative MC algorithm, which is known as
Singular Value Thresholding, originally proposed in [16]. Starting
from an initial zero matrix Y0 = O ∈ Rm×n the following steps
take place in each iteration of the algorithm:

Ai = shrink(Yi−1, τ) (5)
Yi = Yi−1 + µPΩ(P −Ai) (6)

where µ is a non–negative step size, PΩ(X), ∀X ∈ Rm×n is a sam-
pling operator Rm×n 7→ Rm×n associated with the set Ω, which
assigns entries of its matrix argument /∈ Ω equal to zero, and keeps
the rest unchanged. Finally, shrink(·, τ) is a rank reduction thresh-
olding function, setting zero the singular values which are below a
certain threshold determined by the parameter τ > 0. A typical ex-
ample of a thresholding function is the soft thresholding one with
definition: is:

∀X ∈ Rm×n : shrink(X, τ) = UT (Σ)V T

where U ,Σ,V is the output of the regular Singular Value Decom-
position algorithm and the operator T (·) applied to the diagonal ma-
trix Σ applies the following operation to each component of the di-
agonal: max(0, σk − τ), k = 1, . . . ,min{m,n}.

The intuition behind the SVT algorithm can be summarized as
follows. The thresholding operator forces some singular values to
zero and the resulting matrix is of low rank. In the sequel, step (4)
“brings close” the estimated matrix and the matrix P in the set of
observed entries. The steps of the pathloss reconstruction algorithm
are summarized in Table 1. The parameter ε is a user defined thresh-
old for the termination of the algorithm.

3. IDENTIFYING THE MOST INFORMATIVE AREAS

Let us now focus on the estimation of the informative areas; that is
areas from which we want to have samples, since such knowledge
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Table 1. SVT algorithm for completing the pathloss map
Initialize: Incomplete matrix of pathloss
measurements P , Y0, τ > 0, µ > 0, ε > 0
WHILE ‖Ai −Ai−1‖ > ε
DO
Update Ai via (5)
Update Yi via (6)
ENDWHILE

can improve the pathloss reconstruction. Note that some regions can
be non-smooth. This is the consequence of large buildings, obsta-
cles, tunnels that can abruptly attenuate the propagating radio wave.
Due to these, the pathloss in such areas, exhibits low spatial correla-
tion and this can lead to poor reconstruction effects. Consequently,
in this case targeted measurements are required. In order to identify
these regions, which in our case correspond to entries of the ma-
trix, we resort to the family of the active learning algorithms, e.g.,
[17, 18], and in particular we employ the Query by Committee ratio-
nale, e.g., [18].

The general idea is to quantify the uncertainty of prediction of
each missing entry in the matrix and to obtain, afterward, measure-
ments from the most uncertain ones. To achieve this, we apply the
QbC method. Initially, we reconstruct the area or equivalently, we
complete the sparse matrix, using several different algorithms and
using a subset of the available measurements. In our application,
assuming that our available budget corresponds to k measurements,
coming from drive tests, we first complete the matrix using a number
of l < k observed entries. Subsequently, having access to a number
of reconstructed matrices we find the topK := k− l entries with the
largest “disagreement” according to a certain criterion and we obtain
measurements from them. Finally, we perform drive tests to obtain
the K samples indicated by the previous step and we reconstruct the
pathloss map exploiting the newly obtained information.

In general, one can employ any number of MC algorithms to
reconstruct the matrix. Here, we employ the SVT and two more
schemes, i.e., the K Nearest Neighbors (KNN) and the Kernel Adap-
tive Projected Subgradient Method (KAPSM), which are described
next.

• KNN: The KNN method identifies theK columns, which are
closest to the one containing a missing value and uses the
average of them as a guess for the missing entry, [19].

• KAPSM: This algorithm, proposed in [10], attempts to fit a
nonlinear function between the geographical location and the
pathloss. Next, this function is used to predict the channel
gain in a certain position. The KAPSM algorithm is online,
i.e., the data is received sequentially, once per iteration step,
and the unknown function is obtained via kernel adaptive fil-
tering.

These three algorithms run in parallel using the same set of mea-
surements as an input. Their output is a complete matrix. After
the estimation of the missing entries we obtain the entries with the
largest disagreement according to the following simple rule. Denot-
ing by a(ζ)

ij , ζ = 1, 2, 3, the predicted entry ij of algorithm ζ the
disagreement equals to

dij = (a
(1)
ij − a

(2)
ij )2 + (a

(2)
ij − a

(3)
ij )2 + (a

(1)
ij − a

(3)
ij )2. (7)

The K entries, which score the largest disagreement, are chosen and
we perform drive tests to obtain the pathloss. The steps of the algo-
rithm are summarized in Table 2.

Table 2. The QbC method for identifying informative areas
Initialize: Incomplete matrix of pathloss measurements P ,
available budget k,
number of entries for initial reconstruction l
1: Employ the SVT, the KNN and the KAPSM
to compute the missing entries a(ζ)

ij , ζ = 1, 2, 3
using k − l measurements.
2: Compute the K entries with the largest disagreement w.r.t. (7)
3: Obtain the pathloss in the areas corresponding to the K entries
4: Reconstruct the pathloss map using the newly identified entries

Fig. 2. Illustration of a) the original pathloss map, b) the sparse one
with the missing entries, c) the reconstructed one via the SVT

4. SIMULATIONS

In this section, we present numerical examples in order to test the
SVT algorithm as well as the QbC method, in the context of pathloss
reconstruction, in a real cellular network. Specifically, we consider
a pathloss map of Berlin, Germany, originating from the data of the
MOMENTUM project [11] and we reconstruct pathloss within an
area of 7500 m2. The size of each pixel, i.e., entry of the matrix,
equals to 50× 50 m and, consequently, the dimension of the matrix
we want to reconstruct is 150× 150. The total number of Base Sta-
tions (BSs) collecting pathloss measurements from the users equals
to 187 and we take into consideration the BS with the strongest
signal to fill the observed entries of the matrix. Furthermore, the
adopted performance metric is the Normalized MSE with the fol-
lowing definition:

NMSE =
‖Â−H‖2F
‖H‖2F

(8)

where H stands for the Berlin pathloss matrix comprising all the
coefficients, Â is the reconstructed matrix and ‖·‖F is the Frobenius
norm.

In the first experiment we apply the SVT algorithm to the Berlin
Map (Fig. 2). In particular, we reconstruct the matrix having ac-
cess to 5000 entries out of the total number of 22500. The step–
size equals to µ = 1.5, and the parameter τ is computed via cross-
validation, e.g., [20]. Finally, the parameter ε is set equal to 10−5.
Fig. 2 illustrates the original pathloss map, the one with the miss-
ing entries and the reconstructed one. It can be readily seen that
the reconstructed map approaches the original one, despite the large
number of unobserved entries.

In the second experiment, we compare the performance of the
SVT with that of the KAPSM [10] for different values of observed
entries. For the former algorithm the parameters are the same as in
the previous experiment and for the latter the involved parameters
are optimized in the sense that the algorithm reaches the lowest error
floor after convergence. Fig. 3 illustrates the performance of the two
reconstruction algorithms. The horizontal axis represents the num-
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Fig. 3. Comparison of the SVT and the KAPSM for the pathloss
reconstruction

ber of available measurements and the vertical axis corresponds to
the NMSE (in dB). It can be readily seen that the SVT outperforms
significantly the kernel based algorithm. Note that, at 7500 measure-
ments, the accuracy with the MC algorithm is approximately 4.5 dB.
On top of that, apart from the NMSE performance plots, the SVT is
computationally efficient, as the runtime of our MATLAB imple-
mentation is 4 s for 5000 measurements while for the KAPSM the
runtime is approximately 30 s. However, it should be pointed out
that the KAPSM algorithm is online and, consequently, saves mem-
ory by storing fewer measurements.
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Fig. 4. Evaluation of the QbC method in pathloss reconstruction

In the third experiment, our goal is to validate the benefit of sam-
pling the most informative areas by employing the QbC rationale.
The experimental setup can be summarized as follows. We consider
that k measurements are available and we compare the reconstruc-
tion accuracy, in terms of NMSE, in the following scenarios:

• The pathloss is reconstructed using all the available measure-
ments. This scheme is referred to as Random Sampling.

• The pathloss is reconstructed using k −K measurements. In

the sequel, we apply the QbC method (Table 2) in order to
find the K entries with the largest disagreement according to
(7) and sample them. Finally, we apply the SVT using the
initial k − K entries and the k entries computed previously.
This scheme is referred to as QbC.

The parameter K is fixed and equal to K = 6500 and we let the
parameter k vary. The results are summarized in Fig. 4. It can be
clearly seen that the QbC enhances the accuracy of the reconstruc-
tion. Obviously, this comes at the expense of an increased compu-
tational complexity since the map is reconstructed using more than
one algorithm. Nevertheless, there is an important gain, since with
the same number of measurements we improve the reconstruction
accuracy, which is very important if we take into consideration how
costly drive tests are.

5. CONCLUSIONS AND FUTURE WORK

In this paper, an algorithm for pathloss map reconstruction based on
matrix completion was proposed. Furthermore, we present a method
to identify areas where further measurements maximize the accuracy
of the reconstruction. This method is based on the QbC rational
and provides operators with a powerful tool to plan cost-efficient
drive tests. The paper also presents a performance evaluation and
comparative experiments of our algorithms. Future work focuses on
deriving online algorithms for pathloss maps reconstruction and for
adaptive identification of the informative areas.
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