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ABSTRACT

We consider the case where a team of unmanned vehicles
are tasked with distributed beamforming in order to cooper-
atively transmit a message to a remote station. We propose
a joint motion and communication optimization framework
where the robots move in order to find locations that satisfy
the given reception quality requirement while minimizing the
overall motion energy consumption. For the case where the
channel is perfectly known, we show that this problem can be
posed as a knapsack problem and show the underlying trends
of the optimum solution. We then extend our approach to the
case where the channel is not known over the space. We show
how the previously proposed channel prediction framework
can be integrated with path planning for distributed robotic
beamforming under motion energy constraints. Finally, we
present extensive simulation results in realistic communica-
tion environments.

Index Terms— Mobile robots, distributed beamforming,
multiple-choice knapsack problem.

1. INTRODUCTION
A wireless sensor network is a spatially distributed network of
sensor nodes with several potential applications [1]. Recent
advances in robotics have further enabled the possibility of a
network of unmanned vehicles. With the addition of mobility,
the network can have several potential applications such as
search and rescue, emergency response, or surveillance.

Relation to past work: In this paper, we consider a
network of unmanned vehicles. In such networks, interest-
ing interplay between communication and motion planning
arises, which has opened up new multidisciplinary areas such
as communication-aware path planning [2, 3, 4]. For in-
stance, a node can utilize its mobility to find a spot better
for communication [5] or to form a communication relay
network [6]. In [7], robots exploit their mobility to move
into better positions in order to act as collaborative relay
beamformers. In the communication literature, cooperative
communication strategies such as distributed beamforming
have been studied and utilized in the context of fixed nodes
[8]. Such strategies take advantage of transmit diversity and
communicate the same message, with optimum weights, from
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multiple nodes. In this paper, we consider distributed coop-
erative beamforming with unmanned vehicles, in order to
enable successful communication with a remote station. The
mobile nodes all have the message that needs to be commu-
nicated to a remote node. Each node can incur motion energy
to move to a better place for cooperative beamforming. We
are then interested in finding the optimum final positions
of the nodes under reception quality constraints. There are
two main underlying challenges. First, each node needs to
have an assessment of the link quality when communicating
from an unvisited location over the field. In order to enable
this, we utilize our previously-proposed probabilistic channel
prediction framework [9], which allows each node to assess
the channel quality at an unvisited location, based on a small
number of a priori channel samples. Introducing coopera-
tive beamforming will further result in new challenges for
path planning as each node can not decide on its own final
destination without considering other nodes. We then pose
and analyze the overall joint motion and communication op-
timization problem. In Section 3, we start with analyzing the
case where the channel is perfectly estimated by the nodes,
in order to gain insights into the optimum solution and the
underlying trends. We show that the minimum motion en-
ergy cooperative beamforming problem can be posed as a
multiple-choice knapsack problem [10], which can be solved
efficiently with existing tools. We further show underlying
trends of the optimum solution, e.g., how different channel
parameters will impact the total motion energy consumption.
In Section 4, we then extend our framework to the case where
the nodes do not know the channel over the field and have
to probabilistically assess it. Our results show the impact of
channel assessment uncertainty on the optimum solution.

2. PROBLEM SETUP
In this section we start by introducing our utilized motion
model. We then summarize how each robot can probabilisti-
cally and realistically assess the channel at unvisited locations
over the workspace, which is key for its path planning.

2.1. Motion Energy Modeling
In this paper, we take the motion energy to be proportional
to the distance traveled, i.e. Motion Energy = κMd where
d is the distance traveled and κM is a constant that depends
on factors such as friction, terrain type, and the mass of the
vehicle. As several studies in the robotics literature indicate,
this is a good model for wheeled robots [11, 3, 12].
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2.2. Communication Modeling
In order for each robot to move to a proper spot for coopera-
tive beamforming, it needs an assessment of the communica-
tion quality at any position in the workspace.1 Realistically,
however, the robots would only have a few samples of the
channel collected along their trajectories or from prior opera-
tions in the same workspace. Then, each robot needs to pre-
dict the channel at unvisited locations, based on these a priori
channel samples. In this section, we briefly summarize our
previous work on probabilistically predicting the spatial vari-
ations of wireless channels, enabling the robots to realistically
assess the channel over the field.
2.2.1. Overview of Probabilistic Channel Modeling [13]
A communication channel is best modeled as a multi-scale
random process with three major dynamics: path loss, shad-
owing and multipath fading [13]. Let Γ(x) denote the re-
ceived channel power from a transmitter at location x ∈ W
(W ⊆ R2 is the workspace) to the remote station (located
at xb). The received channel power in the dB domain,
ΓdB(x) = 10 log10(Γ(x)), can be expressed as ΓdB(x) =
ΓPL,dB(x) + ΓSH,dB(x) + ΓMP,dB(x) where ΓSH,dB and ΓMP,dB
are random variables denoting the impact of shadowing and
multipath respectively, and ΓPL,dB(x) = KdB−10nPL‖x−xb‖
is the distance-dependent path loss with nPL representing the
path loss exponent. ΓSH,dB(x) is best modeled as a Gaus-
sian random variable with an exponential spatial correlation:
E {ΓSH,dB(x1)ΓSH,dB(x2)} = αe−‖x1−x2‖/β where α is the
shadowing power and β is the decorrelation distance.
2.2.2. Overview of Realistic Channel Prediction [9],[4]
Let θ = [KdB nPL]T denote the vector of path loss parameters.
Let Y represent the stacked vector of m a priori-gathered re-
ceived channel power measurements (in dB) that are collected
in the same environment, and Q = {q1, · · · , qm} denote the
corresponding positions. Then, a Gaussian random variable,
ΓdB(q), with the mean of ΓdB(q) = E

{
ΓdB(q)

∣∣ Y, θ̂, β̂, α̂, ρ̂} =

Hq θ̂+ΨT(q)Φ−1
(
Y−HQθ̂

)
and variance of Σ(q) = E

{(
ΓdB(q)−

ΓdB(q)
)2 ∣∣ Y, θ̂, β̂, α̂, ρ̂} = α̂ + ρ̂ − ΨT(q)Φ−1Ψ(q) can best

characterize the received channel power (in the dB domain)
when transmitting from an unvisited location q ∈ W , where
Hq = [1 −10 log10(‖q−xb‖)],HQ = [1m −DQ], 1m represents
the m-dimensional vector of all ones and xb is the position
of the remote station. Furthermore, DQ =

[
10 log10(‖q1 −

xb‖) · · · 10 log10(‖qm − xb‖)
]T, Φ = Ω + ρ̂ Im with Ω

denoting a matrix with entries
[
Ω
]
i,j

= α̂e−‖qi−qj‖/β̂ for

i, j ∈ {1, · · · ,m}, Ψ(q) =
[
α̂ e−‖q−q1‖/β̂ · · · α̂ e−‖q−qm‖/β̂

]T,
and ρ denotes the power of the multipath random variable
(in dB). The symbol ˆ represents the estimation of the
corresponding underlying parameters based on the a priori
samples. See [9] for more details on the estimation of the un-
derlying parameters and the performance of this framework
with real data and in different environments.

1The channel here refers to the uplink from a position in the workspace
to the remote station.

3. COOPERATIVE ROBOTIC BEAMFORMING
WITH PERFECT CHANNEL KNOWLEDGE

Consider N unmanned vehicles in the workspace W ⊆ R2.
Let di(xi) = ‖xi − x0

i ‖2 be the distance traveled by robot i
with x0

i and xi denoting the initial and final position of robot
i respectively. Γ(xi) is the channel power when robot i trans-
mits from position xi, and PT represents the total joint trans-
mit power constraint of the robots.2 All the robots have a copy
of the message that needs to be communicated. The robots
then employ distributed transmit beamforming [8], which re-
sults in the total received power: PR =

∑N
i=1 p(xi), where

p(xi) = PTΓ(xi). We then have the following optimization
for robotic path planning and cooperative communication:

minimize κM

N∑
i=1

di(xi)

subject to
N∑
i=1

p(xi) ≥ PR,th,

(1)

where xi ∈ N (x0
i ), N (x0

i ) ⊆ W is the neighborhood
around x0

i that the ith robot is constrained to move in (if no
constraints, the set will be the whole space) and PR,th is the
minimum required received signal power at the remote sta-
tion for a successful communication, imposed by the Bit Er-
ror Rate (BER) requirement. The optimization variables are
xis, the final positions of the robots. The optimization prob-
lem of (1) then aims at finding the positions that the robots
should move to which minimizes the total motion energy and
satisfies the required received power at the remote station.
3.1. Optimum Solution
In this section we show how the optimization problem of (1)
can be posed as a multiple-choice knapsack problem, which
can be solved optimally for several cases that arise in practice.

We discretizeW intoM cells with centers rj ∈ W, for j ∈
{1, · · · ,M}. Equation (1) can then be formulated as

minimize κM

N∑
i=1

∑
j∈Ni

dijxij

subject to
N∑
i=1

∑
j∈Ni

pjxij ≥ PR,th∑
j∈Ni

xij = 1, xij ∈ {0, 1}, ∀ j ∈ Ni, ∀ i,

(2)

where dij = di(rj) is the distance to cell j, pj = p(rj) =
PTΓ(rj), and Ni ⊆ {1, · · · ,M} is the set of cells present in
N (x0

i ). We refer to (2) as the Motion Energy Minimization
Problem (MEMP), with the optimal value of MEMPOPT.
Lemma 1. MEMP can be posed as a multiple-choice knap-
sack problem (MCKP).
Proof. Let {πij}, {wj} be variables defined as πij =
maxk∈Ni

dik − dij and wj = maxk pk − pj . Note that∑N
i=1

∑
j∈Ni

πijxij =
∑N
i=1 maxk∈Ni dik−

∑N
i=1

∑
j∈Ni

dijxij

and
∑N
i=1

∑
j∈Ni

wjxij = N maxk pk −
∑N
i=1

∑
j∈Ni

pjxij .
MEMP of (2) can then be posed as

2Note that the formulation and analysis can be extended to the case where
individual transmit power constraints are enforced instead, which will be the
subject of our future papers.
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maximize
N∑
i=1

∑
j∈Ni

πijxij

subject to
N∑
i=1

∑
j∈Ni

wjxij ≤ c∑
j∈Ni

xij = 1, xij ∈ {0, 1}, ∀j ∈ Ni, ∀i,

(3)

where c = N maxk p(rk)−PR,th and the variables are xij .
Equation (3) is the standard form of a well-studied opti-

mization problem known as multiple-choice knapsack prob-
lem (MCKP) [10], [15]. Although MCKP is NP-hard, an ex-
act solution can be efficiently achieved for several cases that
arise in practice. In this paper, we thus utilize the minimal al-
gorithm developed by Pisinger [10] to solve MCKP optimally.
Remark 1. It is easy to show that the optimal values of the
two formulations are related as
MEMPOPT = κM

(∑N
i=1 maxk∈Ni

dik −MCKPOPT

)
.

4. COOPERATIVE ROBOTIC BEAMFORMING
WITH PROBABILISTIC CHANNEL LEARNING

As was discussed earlier, the channel power over the workspace
will not be known to the robots. Instead, the robots will uti-
lize the probabilistic prediction approach of Section 2.2.2 to
assess the channel at an unvisited location using a small num-
ber of a priori samples. The original robotic beamforming
problem of (1) can be posed as follows in a stochastic setting:

minimize κM

N∑
i=1

di(xi)

subject to Pr

(
N∑
i=1

p(xi) < PR,th

)
< Prout,

(4)

where xi ∈ N (x0
i ), Pr(.) denotes the probability of the ar-

gument, p(xi) = PTΓ(xi) with Γ(xi) being the random vari-
able denoting the channel power when robot i transmits from
xi and Prout is the maximum tolerable outage probability.

As seen in Section 2.2.2, the received channel power
(in dB) is best modeled as a Gaussian random variable i.e.
ΓdB(xi) ∼ N (ΓdB(xi),Σ(xi)). p(xi) = PTΓ(xi) is then
modeled as a lognormal random variable, i.e. 10 log10 p(xi) ∼
N (µ(xi), σ

2(xi)) where µ(xi) = 10 log10 PT + ΓdB(xi)
and σ2(xi) = Σ(xi). The received signal power PR =∑N
i=1 p(xi) is thus the sum of lognormal random vari-

ables. Lognormal is a good approximation for the dis-
tribution of the sum of lognormal random variables [16],
[17]. Then, we have 10 log10 PR ∼ N (µsum, σ

2
sum), where

µsum and σsum can be found by employing the Fenton-
Wilkinson method [17] wherein the first and second cen-
tral moments of PR and

∑N
i=1 p(xi) are equated. Then,

the outage probability condition in (4) can be expressed as
µsum + σsumQ

−1 (1− Prout) ≥ PR,th,dB, where Q(.) denotes
the Q function. The optimization problem (4) can then be
solved by using existing optimization toolboxes.

Note that in general p(xi)s may not be uncorrelated de-
pending on how close any two robots get to each other. While
we can express µsum and σsum as a function of individual mean

and variance for the general case of correlated lognormal ran-
dom variables, in order to reduce the computational complex-
ity, we assume uncorrelated p(xi)s in Section 5. However,
each node still learns the underlying channel correlation pa-
rameters, as discussed earlier, and does not assume uncorre-
lated channels in the learning process.

4.1. Approximated Problem Via Knapsack Posing
The optimization problem (4) can be approximated with a
deterministic equivalent by using the predicted mean and
variance. More specifically, we can approximate p(rj) with
10(µ(rj)−ησ(rj))/10, for some constant η in (2). This approx-
imated problem can be solved using knapsack posing, as
discussed in Section 3.1. We next find an η that guarantees a
solution satisfying Prout.

As in Section 3.1 we partition W into M segments
with centers rj ∈ W . 10 log10 p(rj) is distributed as
N (µ(rj), σ

2(rj)). Define p̃j = 10(µ(rj)−ησ(rj))/10 for
some constant η. Replace pj by p̃j in (2). Let ji ∈ Ni
be the index of the cell chosen by agent i. The probability
of successful transmission is then Pr

(∑N
i=1 p(rji) ≥ PR,th

)
≥

Pr
(∑N

i=1 p(rji) ≥
∑N
i=1 p̃ji

)
≥ Pr (p(rji)− p̃ji ≥ 0, ∀i) =∏N

i=1 Pr (p(rji) ≥ p̃ji) = [Q (−η)]N since
∑N
i=1 p̃ji ≥ PR,th and

p(rji)s are assumed to be uncorrelated. Imposing a probabil-
ity of outage of Prout gives us η = −Q−1

(
(1− Prout)

1/N
)

while
the resulting MCKP problem is efficiently solved. However,
we may not be able to find a feasible solution since this
approach is overly conservative.

5. SIMULATION RESULTS
We generate a realistic 2D channel over a rectangular work-
space, using the method described in [14]. The underlying
parameters are chosen as follows PT,dB = 0 dBm, KdB =
−40 dB, nPL = 3, α = 5, β = 3 m and ρ = 1.3. The
minimum required received power is taken as PR,th,dB = −70
dBm.

We first consider the case where the channel is perfectly
known to the robots (Section 3). We implement D. Pisinger’s
minimal algorithm [10] to solve the resulting MCKP and ob-
tain the optimal solution. Fig. 1 shows the solution for a sam-
ple channel realization. It can be seen that two of the nodes
incurred non-negligible motion energy to find spots better for
cooperative beamforming. Next, we discuss the underlying
trends as a function of the channel parameters by running sev-
eral simulations for each set of parameters. Fig. 3 shows the
total distance traveled by all the nodes as a function of the
path loss exponent. For each exponent, several channels are
generated with the corresponding exponent and the rest of the
parameters as mentioned before. The performance is then av-
eraged over these runs as well as over the initial distribution
of the positions over the space. We can see that as the path
loss exponent increases, the total traveled distance increases
due to lower channel power values. Fig. 4 shows the trend as
the shadowing power increases. It can be seen that the total

6387



distance traveled decreases due to the fact that as the shadow-
ing power increases, spatial variation increases. Thus, a node
can find a good spot with lesser movement. Fig. 5 shows the
trend as a function of the shadowing decorrelation distance.
As the decorrelation distance increases, channel gets uncorre-
lated slower. It can be seen that the nodes have to travel less
as the decorrelation distance gets smaller similar to the impact
of shadowing power increase. Note that the remote station is
out of the workspace on the lower left corner.
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Fig. 1. Distributed Robotic Beamforming – Case of perfect channel
knowledge. See the pdf for a color illustration.
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Fig. 2. Distributed Robotic Beamforming – Case of probabilistic
channel learning.
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Fig. 3. Average total distance traveled as a function of path loss
exponent (nPL) for the known channel case.

Next, we simulate the case where the robots probabilis-
tically predict the channel (optimization problem (4)). The
channel is generated in a similar manner described above and
the outage probability is taken as Prout = 0.1. The channel
is then predicted based on 5% randomly-spaced prior mea-
surements over the workspace. This channel predictor as well
as the Fenton-Wilkinson method are used in conjunction with
the fmincon function of MATLAB to obtain a solution.3 Fig.
2 depicts the solution for the sample channel realization and

3Note that (4) is a nonconvex optimization problem.
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Fig. 4. Average total distance traveled as a function of the shadow-
ing power (α) for the known channel case.
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Fig. 5. Average total distance traveled as a function of the decorre-
lation distance (β) for the known channel case.

robot initial positions of Fig. 1. The robots move more in this
case as their assessment of the channel is not perfect.

Due to the uncertainty of channel prediction, there could
be cases where the final positions do not satisfy the received
required power of (4), i.e. PT

∑N
i=1 Γ(xi) < PR,th. Then, the

nodes have to increase their total joint transmit power budget
beyond the nominal value of PT to PR,th∑N

i=1 Γ(xi)
. The more

conservatively Prout is selected, the lower the chance of a so-
lution that does not satisfy the received power requirement.
However, this comes with an increase in the chance of not
finding feasible solutions. Overall, several factors such as
channel prediction and learning affect the final solution and
performance. Further analysis of them as well as analyzing
the trends of the solution is an avenue for future work.

6. CONCLUSIONS
We considered the scenario where a team of mobile robots
are tasked with transmitting a message to a remote station
using distributed beamforming, while minimizing the total
motion energy and satisfying a given reception quality con-
straint. When the channel is perfectly known, we showed how
to pose this as a multiple-choice knapsack problem. We then
extended our approach to the case of unknown channel over
the space. More specifically, we showed how probabilistic
channel assessment can be integrated with path planning for
distributed robotic beamforming under motion energy con-
straints. Finally, we presented extensive simulation results in
realistic communication environments.

6388



7. REFERENCES

[1] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubrama-
niam, and Erdal Cayirci, “Wireless sensor networks: a
survey,” Computer networks, vol. 38, no. 4, pp. 393–
422, 2002.

[2] Alireza Ghaffarkhah and Yasamin Mostofi, “Path plan-
ning for networked robotic surveillance,” Signal Pro-
cessing, IEEE Transactions on, vol. 60, no. 7, pp. 3560–
3575, 2012.

[3] Chia Ching Ooi and Christian Schindelhauer, “Mini-
mal energy path planning for wireless robots,” Mobile
Networks and Applications, vol. 14, no. 3, pp. 309–321,
2009.

[4] Alireza Ghaffarkhah and Yasamin Mostofi, “Channel
learning and communication-aware motion planning in
mobile networks,” in American Control Conference
(ACC), 2010. IEEE, 2010, pp. 5413–5420.

[5] Yuan Yan and Yasamin Mostofi, “Co-optimization of
communication and motion planning of a robotic oper-
ation under resource constraints and in fading environ-
ments,” Wireless Communications, IEEE Transactions
on, vol. 12, no. 4, pp. 1562–1572, 2013.

[6] Yuan Yan and Yasamin Mostofi, “Robotic router
formation in realistic communication environments,”
Robotics, IEEE Transactions on, vol. 28, no. 4, pp. 810–
827, 2012.

[7] Nikolaos Chatzipanagiotis, Yupeng Liu, Athina Petrop-
ulu, and Michael M Zavlanos, “Controlling groups of
mobile beamformers,” in Decision and Control (CDC),
2012 IEEE 51st Annual Conference on. IEEE, 2012, pp.
1984–1989.

[8] Raghuraman Mudumbai, D Richard Brown III, Upa-
manyu Madhow, and H Vincent Poor, “Distributed
transmit beamforming: challenges and recent progress,”
Communications Magazine, IEEE, vol. 47, no. 2, pp.
102–110, 2009.

[9] Mehrzad Malmirchegini and Yasamin Mostofi, “On
the spatial predictability of communication channels,”
Wireless Communications, IEEE Transactions on, vol.
11, no. 3, pp. 964–978, 2012.

[10] David Pisinger, “A minimal algorithm for the multiple-
choice knapsack problem,” European Journal of Oper-
ational Research, vol. 83, no. 2, pp. 394–410, 1995.

[11] David Kiyoshi Goldenberg, Jie Lin, A Stephen Morse,
Brad E Rosen, and Y Richard Yang, “Towards mobil-
ity as a network control primitive,” in Proceedings of
the 5th ACM international symposium on Mobile ad hoc
networking and computing. ACM, 2004, pp. 163–174.

[12] Chiping Tang and Philip K McKinley, “Energy opti-
mization under informed mobility,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 17, no. 9,
pp. 947–962, 2006.

[13] Andrea Goldsmith, Wireless communications, Cam-
bridge university press, 2005.

[14] Alejandro Gonzalez-Ruiz, Alireza Ghaffarkhah, and
Yasamin Mostofi, “A comprehensive overview and char-
acterization of wireless channels for networked robotic
and control systems,” Journal of Robotics, vol. 2011,
2012.

[15] Prabhakant Sinha and Andris A Zoltners, “The multiple-
choice knapsack problem,” Operations Research, vol.
27, no. 3, pp. 503–515, 1979.

[16] Neelesh B Mehta, Jingxian Wu, Andreas F Molisch, and
Jin Zhang, “Approximating a sum of random variables
with a lognormal,” Wireless Communications, IEEE
Transactions on, vol. 6, no. 7, pp. 2690–2699, 2007.

[17] Lawrence F Fenton, “The sum of log-normal probability
distributions in scatter transmission systems,” Commu-
nications Systems, IRE Transactions on, vol. 8, no. 1,
pp. 57–67, 1960.

6389


