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ABSTRACT

This paper focuses on the challenge of maintaining reli-
able connectivity in an ad hoc network, where interference
is possible. To cope with such interference, the paper in-
troduces throughput connectivity and weighted throughput
connectivity. Throughput connectivity reflects the possibil-
ity of establishing communication between nodes for given
a signal power level, while weighted throughput connectiv-
ity associates the throughput as a weight in the associated
network graph. Throughput connectivity is less sensitive
to network’s parameters than the one based on weighted
throughput connectivity. It makes maintaining throughput
connectivity protocol less resource consuming (say, by send-
ing less frequently channel state information (CSI)). Whereas,
weighted throughput protocol is more efficient in power allo-
cation due to employing a continuous scale in Laplacian ma-
trix. To illustrate these notions, two approaches to maximize
connectivity were considered: (a) an adaptive transmission
protocol that re-allocates transmission power between nodes,
and (b) detecting and eliminating a malicious threat to main-
tain accumulated connectivity over time slots. The first prob-
lem was modeled by a maxmin problem, and solved by Semi-
Definite Programming. The second problem was modeled by
a stochastic game and solved explicitly.

Index Terms— Connectivity, Throughput Connectiv-
ity, Fiedler value, Jamming, Stochastic game

1. INTRODUCTION

In order for networks to be reliable, they must maintain their
underlying connectivity, and resist to adversarial attack. An
important characteristic of network connectivity is algebraic
connectivity, as characterized by the network’s Fiedler value,
which is the second smallest eigenvalue of the graph’s Lapla-
cian. This measures how well-connected the graph is, and has
been used to optimize a network’s design, and we now survey
a few such works. A greedy heuristic algorithm was presented
in [1], which adds edges (from a set of candidate edges) to a
graph to maximize its algebraic connectivity. A distributed
algorithm for the estimation and control of the connectivity of
ad hoc networks for random topologies was suggested in [2],
while a steepest-descent algorithm was proposed for control
of the algebraic connectivity in [3]. The problem of improv-
ing network connectivity by adding a set of relays to increase
number of links between network’s nodes was considered in
[4]. Its simplified version was reduced to a semi-definite pro-
gramming optimization problem. In [5] a genetic algorithm
and swarm algorithm were applied for finding the best posi-
tions of adding nodes to a network to meet trade off between

deployment cost and network’s connectivity. A decentralized
algorithm to increase the connectivity of a multi-agent sys-
tem was suggested in [6]. In [7], a problem of finding the best
vertex positional configuration to maximize Fiedler value of
a weighted graph was studied. Finally note that besides al-
gebraic connectivity the other type of connectivity (such as
global message connectivity, worst-case connectivity, network
bisection connectivity, and k-connectivity, see [8]) are used in
networks depending on characteristics to be maintained and
methods used,

.
We note that in all of these papers the possibility of es-

tablishing a new communication link in a network did not de-
pend on signal interference. Interference, however, can lead
to a significant impact since signals sent to establish new com-
munication links also serve as a noise for all the other links
and their signals, thereby reducing the network’s capacity for
maintaining existing communication links. To deal with this
problem, in this paper, two types of connectivity are intro-
duced. First is throughput connectivity, which reflects the
possibility of establishing communication between nodes for
a given power level. Second is weighted throughput connec-
tivity, which associates with each link a weight corresponding
to that link’s throughput. To illustrate these notions, two ap-
proaches to maximizing connectivity were considered: (a) an
adaptive transmission protocol that re-allocates transmission
power between nodes, and (b) detecting and eliminating a
malicious threat to maintain accumulated connectivity over
time slots.

The first problem is modeled by a maxmin problem, and is
solved by a generic method. The second problem is modeled
by a stochastic game and solved explicitly. Example appli-
cations of stochastic games in modeling network security can
be found in [9, 10, 11, 12] and [13]. We also note that there
is quite an extensive literature on detecting an intruder’s sig-
nal or its source (see, for example, books [14, 15, 16], papers
on the detection of unknown signals [17, 18, 19, 20] and on
game-theoretic modeling of spectrum scanning [21, 22]).

The paper is organized as follows. In Section 2, the new
notions for a network’s connectivity are defined. In Section 3,
the problem of designing an optimal transmission protocol
to maximize a network’s connectivity is considered. In Sec-
tion 4, an optimal scanning protocol to maintain a network’s
connectivity is explored.

2. NETWORKS’ CONNECTIVITY

We model a wireless network consisting of n nodes in radio
range of each other. We denote a node by vi = (x1i, x2i),
i ∈ [1, n], where (x1i, x2i) is the coordinate for node vi. Let
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V = {vi, i ∈ [1, n]} be the set of all nodes. We assume that,
when each node communicates, it emits the same power in all
directions. Of course, due to fading gains, pathloss and mu-
tual interference of the signals, not every signal can reach each
receiver. Let P = (P1, . . . , Pn) be the transmission power al-
location where signal Pi is the signal power sent by node i
to every other node. Interference between signals could take
place, and its effect depends on the distance between the re-
ceiver and the sender. Namely, the throughput of received
signal by node j is

Tij,ε(P ) =
{

0, SINRij(P ) < ε,

ln(1 + SINRij(P )), SINRij(P ) ≥ ε,

where ε ≥ 0 is a threshold value for SINR, and SINRij(P ) =
(hiPi/d2

ij)/(σ2 +
∑

k 6=i,k 6=j hkPk/d
2
kj) with σ2 is the back-

ground noise, hi is the fading channel gain, and dij =√
(x1i − x1j)2 + (x2i − x2j)2 is the distance between node vi

and node vj .
To define a communication network’s topology beyond

the nodes, links (edges) between nodes have to be established.
Note that due to its communication background this topol-
ogy has to depend on communication type maintained by the
network. In this paper we consider symmetric communica-
tion, i.e., two nodes (say, node i and node j) are considered
to be linked if and only if Tij,ε(P ) and Tji,ε(P ) are positive.
A link means a possibility to maintain communication. Since
communication is symmetric, link is undirected. Denote the
link between node vi and node vj by eij . Let E(P ) be the
set of all links. It is clear that the graph Γ(P ) = (V,E(P )) is
simple, i.e., there is no self loop for each node and there are
not multiple links connecting two nodes.

The graph Γ(P ), associated with a network, can be rep-
resented by the Laplacian matrix as

Lij(Γ(P )) =


−1, i 6= j, vi and vj are linked,
0, i 6= j, vi and vj are not linked,

−
n∑

k=1,k 6=i
Lik, i = j,

where Lii(Γ(P )) equals the number of nodes connected with
node vi. Also, it is possible to consider a weighted network
by assigning throughput as weight for each link, in which
case the weighted network can be represented by a Laplacian
matrix as

Lij(Γ(P )) =


−wij , i 6= j, vi and vj are linked,
0, i 6= j, vi and vj are not linked,

−
n∑

k=1,k 6=i
Lik, i = j,

where wij = Tij,ε(P ) + Tji,ε(P ) is total throughput of sym-
metric communication between node vi and node vj , and
Lii(Γ(P )) is the total throughput of symmetric communi-
cation between node vi and others nodes.

Since L(Γ(P )) is positive semi-definite and symmetric, its
eigenvalues are all nonnegative. By ordering the eigenvalues
in an increasing way, we have: 0 = λ1(Γ(P )) ≤ λ2(Γ(P )) ≤
. . . ≤ λn(Γ(P )). The eigenvector corresponding to the first
eigenvalue is always eT = (1, . . . , 1). The second eigenvalue
λ2(Γ(P )) is the algebraic connectivity of the system, and is

an indicator of how connected the graph is, and is also called
the Fiedler value. To emphasize that we consider connectiv-
ity based on the fact that there is bi-directional throughput
(above a threshold value) for a link, we will use the term
throughput connectivity and throughput Fiedler value. For a
fixed transmission protocol involving a power assignment P ,
the throughput Fiedler value can be found as solution of the
following optimization problem

λ2(Γ(P )) = min
yT y=1,eT y=0

yTL(Γ(P ))y.

Let us illustrate the behavior of throughput connectivity by
the following example. Let the network consist of five nodes
(0, 0), (1, 0), (0, 1), (1, 1) and (2, 0.5) (Figure 1(a)), and h = 1,
σ2 = 2, ε = 0.1, 0.25 and P = (10, 20, 15, 25, 10) and P5 varies
from 0.2 to 40. Of course, increasing ε yields a decrease in
total throughput (Figure 1(b)). Throughput connectivity is
piece-wise constant versus varying of the power (in our case,
P5, see, Figure 1(c)), while weighted throughput connectivity
is piece-wise continuous on P5 (Figure 1(d)). Thus, weighted
throughput connectivity is more sensitive than throughput
connectivity to a variation of the power. In this example,
we can observe that there is a continuum where throughput
connectivity obtains its maximum, and the value of this max-
imum is not too sensitive to the threshold ε (in the considered
example they coincide for ε = 0.1 and ε = 0.25, and are equal
to 3). Also, we can observe that there is a reduction of the set
where the throughput connectivity obtains its maximum on
reducing the threshold ε, but there is no simple monotonic de-
pendence between throughput connectivity and threshold ε,
For weighted throughput connectivity, such dependence could
be observed, as well as the fact that it obtains its maximum
for a unique P5.

3. OPTIMAL TRANSMISSION PROTOCOL

The network provider might improve the network’s connec-
tivity by varying transmission power vector. Let Π be the
set of feasible transmission protocols. For example, it could
be Π(P ) = {P ≥ 0 :

∑n

j=1 Pi = P}, where P is the total
power allowed by the network’s provider among the nodes.
Then, the problem of optimal transmission power assignment
is given as the following maxmin problem:

λ2(Γ(P )) = max
P∈Π(P )

min
yT y=1,eT y=0

yTL(Γ(P ))y. (1)

This maximization problem of the second smallest eigenvalue
of the Laplacian matrix on its inner parameters is equivalent
to the following optimization problem (see, [23]):

max
P ,z

z,

subject to
L(Γ(P ))− zI � 0, P ∈ Π(P ) and z > 0,

(2)

where I is the n×n identity matrix, and “�” represents pos-
itive definiteness. By definition, Laplacian matrix L(Γ(P )) is
symmetric. Thus, L(Γ(P ))−zI is also symmetric. Therefore,
(2) belongs to Semi-Definite Programming (SDP) problems
[24]. It can be solved by SDP optimization tools, such as
SDPT3 [25, 26], SDPA-M [27, 28] and CSDP [29].
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(a) (b) (c) (d)

Fig. 1. (a) Nodes of the network,(b) Total throughput, (c) Throughput connectivity and (d) Weighted throughput connectivity
as functions on P5.

Fig. 2. Throughput connectivity (left) and weighted
throughput connectivity (righr) as functions on P .

Figure 2(a) illustrates dependence of throughput con-
nectivity and weighted throughput connectivity versus total
power P with ε = 0.1. It is interesting that these two
forms of connectivity are non-decreasing due to the cooper-
ative re-allocation of transmission power between the nodes.
Meanwhile, as it was shown in Figure 1, selfishly increasing
transmission power of just one node could lead to decreasing
the network’s connectivity. Of course, cooperative through-
put is larger than selfish throughput.

4. OPTIMAL SCANNING PROTOCOL

In this section, we consider a problem where an adversary
wants to damage connectivity of a network Γ by attacking its
nodes, while an IDS (Intrusion Detection System), scanning
nodes, intends to detect the adversary to stop his malicious
activity. We assume that all the actions (scanning by the
IDS and attacking by the adversary) are performed in dis-
crete time slots 1, 2, ...,∞. At each time slot, the adversary
can choose a node to attack, and the IDS can choose a node
to scan. If node i is attacked, then connectivity of the undam-
aged network Γi = Γ\{vi} is Ci. If the rivals choose different
nodes then the IDS gets connectivity for an un-jammed net-
work as an instantaneous payoff, and the game moves to the
next time slot and is played recursively with discount factor
δ. If the rivals choose the same node, then with probability
1− γ the adversary is detected and eliminated from the net-
work. Then, the network keeps on working, and the IDS gets
as instantaneous payoff the discounted connectivity C0 of the
whole network. With probability γ the adversary is not de-
tected, the game moves to the next time slot and is played

recursively with discount factor δ. This game can be consid-
ered as a two-state (1 and 2) stochastic game G = (G1, G2).
State 1 represents the malicious state in which the network
is vulnerable to an attack by the adversary, while state 2
represents the state in which the adversary is detected and
is not a threat to the network anymore. Stochastic game
G = (G1, G2) can be described in matrix form as follows:

G1 :


1 2 ... n

1 C1|(γ, 1− γ) C2|(1, 0) ... Cn|(1, 0)
2 C1|(1, 0) C2|(γ, 1− γ) ... Cn|(1, 0)
... ... ... ...
n C1|(1, 0) C2|(1, 0) ... Cn|(γ, 1− γ)

,

G2 :
( 1

1 C0|(0, 1)
)
,

In state 1, matrix notation is used such that each entry cor-
responds to a pair of nodes (i, j) chosen by the IDS and the
adversary. The value in the left part of each entry is the in-
stantaneous payoff (un-jammed connectivity) to the IDS in
this zero-sum stochastic game, while the right part gives the
probability distribution over the future states. Thus, if i 6= j
then the instantaneous payoff to the IDS is Cj , and the next
state is state 1. If i = j then the instantaneous payoff to the
IDS is Ci, and the next state is state 1 with probability γ,
and it is state 2 with probability 1− γ. Note that the payoff
at the next epoch is discounted with discount rate δ.

In state 2, the rivals are passive, since the adversary is
detected and cannot attack the network anymore. The game
cannot leave this safe state. At each time slot the IDS ob-
tains the discounted payoff C0, which is the connectivity of
un-jammed network. Thus, the total accumulated discounted
payoff in state 2 is equal to (1 + δ+ δ2 + ...)C0 = C0/(1− δ).
Thus, the game G is equivalent just to the game G1 with
a single state. The game G1 has a solution in (mixed) sta-
tionary strategies, i.e., the strategies that are independent of
history and current time slot. A (mixed) stationary strat-
egy to the IDS is a probability vector pT = (p1, p2, ..., pn),
where pi is the probability to scan node i and eTp = 1. A
(mixed) stationary strategy to the jammer is a probability
vector qT = (q1, q2, . . . , qn), where qi is the probability to
jam node i, and eT q = 1. Solution of the game G1 is given
as a solution to the Shapley (-Bellmann) equation game [30]:
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val(G1) = max
p≥0,eT p=1

min
q≥0,eT q=1

n∑
i=1

n∑
j=1

Aij(val(G1))piqj ,

= min
q≥0,eT q=1

max
p≥0,eT p=1

n∑
i=1

n∑
j=1

Aij(val(G1))piqj ,

where

Aij(G1) =
{
Ci + (1− γ)C0/(1− δ) + γδG1, i = j,

Ci + δG1, i 6= j,

and V := val(G1) is the value of the game, i.e., the equilib-
rium total accumulated payoff to the IDS. This game G1 is a
stochastic discounted game [30], and so, it has the unique so-
lution in stationary strategies. To find the equilibrium strate-
gies explicitly without loss of generality we can assume that
the nodes are arranged in non-increasing order by Ci, i.e.,
C1 ≤ C2 ≤ . . . ≤ Cn. Also, connectivity of an un-jammed
network is considered larger than connectivity of a damaged
network, i.e., C0 ≥ max1≤i≤n Ci.

Theorem 1 The game has a unique equilibrium in station-
ary strategies. The value of the game and stationary equilib-
rium strategies are given as follows:

V =
δ(1− γ)C0/(1− δ) +

∑k

i=1 Ci

k(1− δ) + δ(1− γ) ,

pi =

{ (1− δ)V − Ci
δ(1− γ)(C0/(1− δ)− V ) , i ≤ k,

0, i > k,

qi =
{

1/k, i ≤ k,
0, i > k,

where k ∈ {1, . . . , n} is an integer given by

ϕk ≤ C0 < ϕk+1, (3)

and ϕi is such that

ϕi =
(1− δ)

∑i

j=1(Ci − Cj) + δ(1− γ)Ci
δ(1− γ) , i ∈ {1, . . . , n}

and ϕn+1 = ∞. Since ϕi is increasing and ϕ1 = C1 < C0,
the k is uniquely defined by (3).

Figure 3 illustrates the tradeoff for weighted throughput
connectivity between detection probability and intention to
bring the maximum damage to the network by the jammer
with δ = 0.6. Namely, if the detection probability is small,
then the jammer could focus his attack on the node which
would reduce the connectivity maximally. Responding to this
threat, the IDS also focuses its scanning effort on this node.
Increasing detection probability makes the jammer consider
its safety by applying his attack efforts among a larger num-
ber of nodes to reduce its detection probability. Also, this
illustrates that the accumulated weighted throughput con-
nectivity is increasing versus discount factor δ (which reflects
the reduction in the urgency of maintaining higher connec-
tivity) and detection probability.

Fig. 3. IDS strategy (top), jammer’s strategy (center) and
accumulated weighted throughput connectivity (bottom).

5. CONCLUSIONS

In this paper, the concept of throughput connectivity and
weighted throughput connectivity was introduced to to de-
scribe the reliability of a network’s communication in the
presence of signal interference due to an adversary. In partic-
ular, we have shown a difference between selfish and cooper-
ative power allocation, namely, selfishly increasing power by
a node might reduce network connectivity, while cooperative
allocation improves the connectivity. Also, we have shown
how a repeated jamming attack could impact the accumu-
lated network connectivity, and how to reduce this impact by
designing a scanning protocol. Our future work is focused
on applying the new connectivity metrics we introduced to
other scenarios, including moving nodes in a theater for co-
ordinating network connectivity, and to apply the throughput
connectivity to Massive MIMO 5G networks.
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