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ABSTRACT

The objective of this work is to consider sparse representations of
certain classes of signals on circulant graphs, by introducing families
of graph wavelets which possess vanishing (exponential) moment
properties. In light of this, we propose a novel framework of sam-
pling and perfect reconstruction of sparse and wavelet-sparse sig-
nals on circulant graphs, which we denote as the Graph FRI frame-
work, as an extension to the traditional discrete case. Given the
dimensionality-reduced GFT of a sparse signal on a graph G, we
can perfectly reconstruct the latter, while inferring a distinct down-
sampling pattern and the structure of the associated coarsened graph
through decomposition of the GFT-basis as the product between a
coefficient matrix C and the multiresolution filtering operation with
a low-pass graph e-spline filter. Hereby, we demonstrate that for a
sufficiently banded adjacency matrix A of G, the obtained coarse
graph preserves the original generating set S of G in a scheme of
spectral sampling with respect to the original eigenbasis of A.

Index Terms— Graph signal processing, graph wavelet, circu-
lant graph, sparsity, finite rate of innovation

1. INTRODUCTION

The emerging need for superior representation and processing of
large complex data through the higher-dimensional dependency
structures of a graph as well as the appeal of developing an as-
sociated mathematical framework, which goes beyond traditional
signal processing theory, have given rise to the field of graph sig-
nal processing, which in recent years has experienced a breadth of
contributions. With the overall aim to establish equivalent concepts
to traditional signal processing with respect to newly arising data
dependencies, the collective of theoretical frameworks and corre-
sponding applications are divided into two main approaches: one
with focus on the graph Laplacian as a positive semi-definite matrix,
derived from i.a. spectral graph theory ([1], [2]), and another with
focus on the adjacency matrix [3]. The study of wavelets on graphs
in particular poses a promising new venue considering the associ-
ated potential to operate with respect to the inherent geometry of
given data, whose higher-dimensional dependencies are represented
by a graph and/or graph signal, and a number of designs have been
proposed ([4], [5], [6],[7]).
One of the challenges in graph signal processing theory is to de-
termine a suitable set of vertices for sampling given that the high
connectivity of graphs provides multiple directions along which one
can downsample [1], so that existing filterbank constructions have
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been favourably modelled for specific types of graphs, which facil-
itate more intuitive operations. Graph wavelets on circulant graphs
have been studied by Ekambaram et al. ([8], [9], [10]), including the
critically-sampled perfect reconstruction spline-like graph wavelet
filterbank, which provided the inspiration for our graph wavelet con-
structions, along with downsampling rules based on the regularity
of the graphs. The class of circulant graphs proves as particularly
convenient due to their Linear Shift Invariance (LSI) property [10]
in addition to the fact that corresponding circulant graph Laplacian
matrices give rise to a Graph Fourier Transform (GFT), which can
be represented as a permutation of the classical DFT. This facilitates
the link to the classical domain, thereby making an intuition for
higher-dimensional extensions more concrete.
Contributions: In this paper, we present a set of novel wavelet
filterbanks on circulant graphs, which have been tailored to the anni-
hilation of certain classes of graph signals. We are interested in the
study of sparsity and sparsity-inducing wavelet constructions on cir-
culant graphs, and in prior work [11] have introduced a higher-order
graph wavelet filterbank, which, based on the vanishing moments
associated with the circulant symmetric graph Laplacian, extends
the spline property to the graph domain. Following a similar line of
derivation, we introduce the notion of a graph e-spline wavelet on
circulant graphs; hereby we define a degree-parameterised e-graph
Laplacian, which can annihilate complex exponential graph signals,
giving rise to novel families of graph e-spline wavelets and filter-
banks. Equipped with a set of sparsifying wavelet transforms, we
proceed to propose a framework of sparse and wavelet-sparse signal
sampling and reconstruction on circulant graphs as an extension of
the traditional Finite Rate of Innovation (FRI) framework [12] to
the graph domain. In particular, we show that sparse graph signals
on circulant graphs can be perfectly reconstructed based on their
dimensionality-reduced GFT representation and additionally extract
the associated coarsened graph through a scheme of spectral sam-
pling, utilising the theory of exponential reproducing kernels [12].
We took a first look at this problem in [13]. The developed theory
can be applied to arbitrary graphs through suitable approximation
schemes by using circulant graphs as building blocks, whose discus-
sion we defer to a longer version due to space constraints.
Related Work: Sampling theory for signals on graphs has been
studied for bandlimited graph signals using different approaches
([14], [15]). In particular, our graph coarsening scheme is compara-
ble to the one introduced in [15], with the difference that we have
a fixed downsampling pattern, and focus exclusively on its implica-
tions for circulant graphs and the associated property preservation.
In addition, our reconstruction framework does not depend on the
locations of the chosen samples, which are rather used to identify a
suitable coarse graph.
This paper is organised as follows: we begin by outlining back-
ground theory in Section 2. In Section 3, we first review our prior
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work on graph spline wavelets, before introducing the novel graph
e-spline wavelets. In Section 4, we present our developed Graph
FRI (GFRI) framework, before making concluding remarks and
discussing future directions in Section 5.

2. PRELIMINARIES

2.1. Background: Graph Signal Processing

We consider graphs, which are undirected, weighted, connected and
circulant, without self-loops. A graph G = (V,E), of cardinality
|V | = N , is defined by a vertex set V and an edge set E, whose
connectivity is reflected in the adjacency matrix A, with Ai,j > 0
if there is an edge between nodes i, j ∈ V , and Ai,j = 0 other-
wise. The degree matrix D, with diagonal entries Di,i =

∑
j Ai,j

reflects the degree per node, while the non-normalized graph Lapla-
cian is defined as L = D − A, which we focus on throughout
this work. In particular, L is positive semi-definite, with a com-
plete set of orthonormal eigenvectors {u}N−1

i=0 and corresponding
nonnegative eigenvalues 0 = λ0 < λ1 ≤ ... ≤ λN−1. A circu-
lant graph G is defined via a generating set S = {sk}Mk=1, with
0 ≤ sk ≤ N/2, whose elements indicate edges between the node
pairs (i, (i ± sk)modN ), ∀sk ∈ S; in particular, there exists a la-
belling on G such that its adjacency matrix is circulant. The sym-
metric circulant matrix L, with first row [l0 l1 l2 ... l2 l1] and
bandwidth M , can be defined via its representer polynomial l(z) =
l0 +

∑M
i=1 li(z

i + z−i).
A graph signal on G can be represented as a vector x ∈ CN with
sample value x(i) at node i. While traditionally real-valued, we
generalise the definition of x for illustration purposes in our discus-
sion, and still require the weights on G to be real. Analogously to
the traditional DFT, the Graph Fourier Transform (GFT) XG of x
on G is the projection onto the basis U = [u0|...|uN−1] such that
XG = UHx, where H denotes the Hermitian transpose. The GFT
of a circulant graph can be expressed as a permutation of the DFT.
We can downsample a signal on a circulant graph G by 2 with re-
spect to the outmost cycle, i.e. by skipping every other labelled node,
requiring s1 = 1 ∈ S (i.e. G is connected) [8]. For simplicity,
we focus on this case here, and restrict the number of nodes to be
N = 2n, n ∈ Z+. The spline-like critically sampled graph wavelet
transform (GWT) on undirected, connected circulant graphs, which
inspired our current designs, is composed of a set of 1-hop local-
ized low- and high-pass filters, HLP = 1

2

(
IN + A

d

)
and HHP =

1
2

(
IN − A

d

)
(see [9], Thm. 1), where d is the degree per node. The

GWT can be iterated on the low-pass branch for a multiresolution
representation, whereby the downsampled nodes can be reconnected
using various schemes, such as Kron reduction [10], depending on
the application of interest. For this work, we choose to reconnect
such that the coarsened graph retains its original generating set S,
assuming A is banded of bandwidth M .

3. SPLINE WAVELETS ON CIRCULANT GRAPHS

3.1. Prior Work: Higher-Order Graph Spline Wavelets

In order to formulate our sampling framework for sparse and
wavelet-sparse graph signals, we need to state the concept of the
graph spline (wavelet) [11]:

Definition 3.1: We define a graph signal y ∈ RN on the ver-
tices of G to be (piecewise) polynomial if its sequence of sample
values, with y(i) at node i, is a discretized (piecewise) polynomial.

Lemma 3.1: For an undirected, circulant graph G of dimension
N , the representer polynomial l(z) of graph Laplacian L has two
vanishing moments, i.e. L annihilates up to linear polynomial graph
signals, subject to a border effect determined by the bandwidth M
of L, whereby 2M << N .

Based on the aforementioned inherent annihilation property of L for
undirected circulant graphs, we derived a variety of graph wavelet
filterbanks which inherit and extend this property to higher-order
through the high-pass filter, as captured in the following [11]:

Theorem 3.1: Given an undirected, and connected circulant graph
G of dimension N , with adjacency matrix A and degree d per
node, the higher-order graph-spline wavelet transform (HGSWT) is
composed of the filters

HLP =
1

2k

(
IN +

A

d

)k
(1)

HHP =
1

2k

(
IN −

A

d

)k
=

(
L

2d

)k
(2)

whereby the high-pass polynomial function HHP (z) has 2k van-
ishing moments. This filterbank is invertible for any downsampling
pattern, as long as at least one node retains the low-pass component.

Furthermore, we can tailor the design of such filterbanks to in-
corporate a well-defined synthesis branch, with the ability to also
reproduce polynomial graph signals by performing spectral factor-
ization. This leads to a modified analysis low-pass filter HLP,an(z),
which can be linked to (1) via a coefficient matrix C, given the
graph Laplacian-based analysis high-pass filter HHP (z), within a
biorthogonal perfect reconstruction filterbank [11]:

Theorem 3.2: Given an undirected, and connected circulant graph
G of dimension N , with adjacency matrix A and degree d per node,
we define the higher-order ‘complementary’ graph-spline wavelet
transform (HCGSWT) via the set of analysis filters:

HLP,an = CHLP =
1

2k
C

(
IN +

A

d

)k
(3)

HHP,an =
1

2k

(
IN −

A

d

)k
(4)

and the set of synthesis filters:

HLP,syn = c1HHP,an ◦ IHP (5)

HHP,syn = c2HLP,an ◦ ILP (6)

where ◦ is the Hadamard product, for constants c1/2, and circulant
indicator matrices ILP/HP , whose entries {1,−1} coincide with
those of HLP/HP,an.
The filter HLP,an is localized within a sub-region of the k̃-hop
neighborhood of each node, whereby k̃ depends on the constraints
we impose on HLP,an(z), such as the ability to reproduce polyno-
mials.

3.2. Graph E-spline Wavelets

We discover that the previously described vanishing moment prop-
erty of the graph Laplacian, can be further extended for the annihi-
lation of a wider range of graph signal classes, by introducing the
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exponential-graph Laplacian.

Definition 3.2: A complex exponential graph signal y ∈ CN is
defined such that its sequence of sample values, with y(j) = eiαtj at
node j, is complex exponential, with α ∈ R and tj = j−1, j ∈ Z+.

Definition 3.3: Let G be an undirected, circulant graph with adja-
cency matrix A and degree d =

∑M
j=1 2dj per node with symmetric

weights dj = Ai,j+i. The parameterised e-graph Laplacian of G
is given by L̃α = D̃α −A, where d̃α =

∑M
j=1 2dj cos(αj) is the

exponential degree.

In particular, we note that the e-graph Laplacian L̃α represents a
generalisation of the traditional graph Laplacian L with respect to
the exponential parameter α, whereby we have that L̃α = L when
α = 0. This is further reinforced by the following result:

Lemma 3.2: For an undirected, circulant graph G of dimension
N , the representer polynomial l̃α(z) of e-graph Laplacian L̃α has
two vanishing exponential moments; i.e. L̃α annihilates complex
exponential graph signals with ±α ∈ R. Unless the graph signal
at hand is periodic, for certain α, this is subject to a border effect
determined by the bandwidth M of L̃α, whereby 2M << N .

Proof. Consider the representer polynomial l̃α(z) of L̃α:

l̃α(z) =

M∑
j=1

(2dj cos(αj)− dj(zj + z−j))

=

M∑
j=1

dj(1− eiαjzj)(1− e−iαjzj)(−z−j).

We note that (1 − e∓iαz−1) is a factor of (1 − e±iαjzj), which
corresponds to two vanishing exponential moments [16].

By proceeding in a similar manner as in the case of the graph spline,
we can now model graph e-spline wavelet filterbanks originating
from the notion of the e-graph Laplacian as a high-pass filter, which
we define as HHPα = 1

2

(
βIN − A

d

)
, for parameter β = d̃α

d
with

d̃α =
∑M
j=1 2dj cos(αj), and propose novel families of wavelets

on circulant graphs.
According to ([17], Thm. 1), for scaling function Hj(z) at level j to
reproduce a function of the form eγmt, it is necessary and sufficient
that the latter is divisible by the term R2j~γ(z), ∀j ≤ j0 − 1, where
R~γ(z) =

∏M
m=1(1 + eγmz−1), with ~γ = (γ1, ..., γM )T ∈ CM ,

i.e. Hj(z) satisfies the generalized Strang-Fix conditions, having no
opposite or zero roots, for suitable ~γ.

In our ensuing discussion, we are interested in creating wavelet
filters on graphs which, together with their duals, are symmet-
ric real valued, of compact support, and possess vanishing expo-
nential moments, mirroring the complementary constructions in
Thm. 3.2. In particular, given the analysis high-pass filter poly-
nomial HHPα(z) with 2 vanishing exponential moments, we can
determine the analysis lowpass filter HLPα,an(z), via spectral
factorization following the same reasoning as for Thm. 3.2, as
an extension of the adjacency-matrix based low-pass construction
HLPα = 1

2

(
βIN + A

d

)
via a coefficient matrix C. In addition, for

the analysis and synthesis filters to have (an equal number of) vanish-
ing moments, we set HLPα,an(z) = (z+ eiα)(1+ e−iαz−1)R(z),
where R(z) is the polynomial to be determined. This gives rise to

the following:
Theorem 3.3: Given the undirected, and connected circulant graph
G of dimension N , with adjacency matrix A and degree d per node,
we define the ‘complementary’ graph e-spline wavelet transform
(CGESWT) via the set of analysis filters:

HLPα,an = CHLPα =
1

2
C

(
βIN +

A

d

)
(7)

HHPα,an =
1

2

(
βIN −

A

d

)
(8)

and the set of synthesis filters:

HLPα,syn = c1HHPα,an ◦ IHPα (9)

HHPα,syn = c2HLPα,an ◦ ILPα (10)

for some constants c1/2, and circulant indicator matrices ILPα/HPα ,
whose entries {1,−1} coincide with those of HLP/HPα,an.

For a multiresolution decomposition, we need to ensure that the fil-
tersHj(z) satisfy the root constraints at each level j, and modify the
parameter 2jα in β accordingly due to the non-stationarity of the fil-
terbank; see [17] for a detailed discussion. In addition, we note that
the filterbank can be generalised to annihilate and reproduce multiple
signals with ±αn by selecting HHP~α,an(z) =

∏
n

1
(2d)

l̃αn(z) and
HLP~α,an(z) = R(z)

∏
n(z + eiαn)(1 + e−iαnz−1) respectively,

however, a polynomial solution R(z) exists only if the remaining
factor does not contain zero and opposing roots [17].

Remark 1: The existence of a coefficient matrix C in Thms 3.2
and 3.3 is based on invertibility of the low-pass filter matrix (1) (and
HLPα in (7)), which is satisfied when G is non-bipartite.

Remark 2: The introduced graph (e-)spline property can be di-
rectly related to the traditional case for a simple cycle graph, and
further extended when the graph at hand is bipartite circulant. In
this case, the filters (1) and HLPα in (7) can also reproduce polyno-
mials and complex exponentials respectively. We omit an in-depth
discussion of this phenomenon here for brevity.

4. THE FRI FRAMEWORK ON CIRCULANT GRAPHS

4.1. The classical FRI framework

In the discrete-time domain, consider a K-sparse signal x ∈ RN ,
||x||0 = K, and define the measurement vector y in the Fourier
domain, such that y = Fx, where F ∈ CN×N is the DFT-matrix.
Using Prony’s method, we can perfectly reconstruct x with M ≥
2K consecutive sample values of y [12].
Furthermore, in the traditional FRI-framework, a signal x(t) can be
sampled with a general exponential reproducing kernel φ(t) and its
shifted versions in continuous-time∑

n∈Z

cm,nφ(t− n) = eαmt for αm ∈ C,m = 0, ..., P (11)

for a proper choice of coefficients cm,n = cm,0e
αmn ([18], [19]).

4.2. The graph FRI framework

Through the breadth of sparsifying wavelet-transforms, introduced
in the previous section, we can facilitate a sparse multiresolution rep-
resentation for certain classes of graph signals. In particular, we per-
form graph wavelet analysis of e.g. (piecewise) polynomial and/or
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complex exponential graph signals y ∈ CN on a given graph G us-
ing a suitable GWT Wj at level j, such that w = PWy, where W
is the resulting GWT matrix product obtained via iteration on the
low-pass branch,

W =

[
Wj

IN− N
2j

]
· · ·
[
W1

IN
2

]
W0

and P a permutation matrix. Hereby, the multiresolution represen-
tation w is a projection from the corresponding coarse graphs Gj
onto the originalG, with an appropriate (permutation) relabelling P.

Definition 4.1: On a circulant, undirected graph G, we define
the class X of K-sparse graph signals, with x ∈ X of the form
x ∈ CN , ||x||0 = K, and the class of wavelet-K-sparse graph
signals W , with y ∈ W , such that y ∈ CN , and multiresolution
representation w ∈ CN , ||w||0 = K, via a suitable GWT.

In light of this, we define the FRI framework for circulant graphs:

Theorem 4.1 (Graph-FRI): Define the permuted GFT basis U
of a given circulant graph G such that UH is the DFT-matrix. We
can sample and perfectly reconstruct a (wavelet-)K-sparse graph
signal (with multiresolution) x ∈ CN , on the vertices of G using the
dimensionality-reduced GFT representation y = UH

Mx,y ∈ CM ,
whereby UH

M are the first M rows of UH , as long as M ≥ 2K.

4.3. Graph Coarsening

We wish to identify the coarse graph G̃ associated with the dimen-
sionality reduced spectral graph signal y, for which we require a
distinct sampling pattern in the vertex domain. Therefore, we resort
to representing the matrix UH

M as the product between a fat coeffi-
cient matrix C and a low-pass GWT filter onGwhich can reproduce
complex exponential graph signals, à la Thm. 3.3.
We begin by noting that the graph Laplacian eigenvector uk of G is
interpreted as having sample uk(i) at node i [1], thereby suggesting
that a coarsened graph may be obtained via sampling in the spectral
domain of the eigenbasis, given a pattern. Hence, we give the fol-
lowing result pertaining to circulant graphs (illustrated in Fig. 1):

Lemma 4.1: Consider an undirected circulant graph G with gener-
ating set S, and adjacency matrix A = 1

N
UΛUH ∈ RN×N with

bandwidth M , where 1√
N

UH is the DFT matrix. We downsample

by 2 via the binary matrix Ψ↓2 ∈ RN/2×N on the first N/2 rows
in UH and eigenvalues Λ, such that ŨH = UH

1:N/2Ψ
T
↓2,and Λ̃ =

Ψ↓2ΛΨT
↓2. The resulting adjacency matrix Ã = 1

N/2
ŨΛ̃ŨH ∈

RN/2×N/2 is circulant with the same generating set S as G.

Proof. The eigenvalues of A with first row [0 a1...a1] are λj =∑M
k=1 2akcos

(
2πjk
N

)
, j = 0, ..., N -1. Thus the eigenvalues of

Ã with the same entries ai and bandwidth M < N/4, are λ̃j =∑M
k=1 2akcos

(
2π(2j)k
N

)
= λ2j , j = 0, ..., N/2-1. We can sim-

ilarly show the preservation of the downsampled DFT-eigenbasis,
omitted for brevity.

We reformulate the GFRI framework as the filtering of sparse graph
signal x with exponential reproducing GWT filter E, which pro-
duces a dimensionality-reduced signal ỹ on a coarse graph G̃, with
subsequent projection onto the lower-dimensional GFT domain via
a coefficient matrix, to facilitate perfect reconstruction (see Fig. 2):

	
Fig. 1. Graph Coarsening for a Circulant Graph with S = {1, 2, 3}

Theorem 4.2: Consider the decomposition of spectral graph signal
y ∈ CM , as defined in Thm. 4.1,

y = UH
Mx = Cỹ = C

J−1∏
j=0

(Ψj↓2E2j~α)x (12)

whereby C ∈ CM×M̃ is a coefficient matrix, Ψj↓2 ∈ RN/2
j+1×N/2j

the binary sampling matrix, and E2j~α ∈ RN/2
j×N/2j a graph e-

spline low-pass filter on G̃j , with ~α = (α1, .., αM ) =
(
0, ..., 2π(M−1)

N

)
.

At each level j ≤ J , we define eigenbasis (Ũj , Λ̃j) ∈ CN/2
j×N/2j

through the projection of Ψj−1↓2 on (Ũj−1, Λ̃j−1) (see Lemma
4.1), with M̃ = N

2J
, given M . Thus the coarser graph G̃j , with

graph signal ỹj =
∏j−1
k=0(Ψk↓2E2k~α)x, has adjacency matrix

Aj = (2j/N)ŨjΛ̃jŨ
H
j

which preserves the generating set S of G for a sufficiently small
bandwidth.

Fig. 2. Sampling Scheme with One Level of Coarsening

Hereby, we iterate for a multiresolution representation, where E2j~α

is designed to reproduce complex exponential graph signals with
±2j~α (based on Thm. 3.3), ensuring that the necessary conditions
are satisfied at each level; this restricts the number of levels J and
reproducible rows M of UH , whose discussion we omit for brevity.
In addition, we note that C is the product between a diagonal coef-
ficient matrix and the reduced DFT (GFT) ŨH

M ∈ CM×N/2
J

, justi-
fying the interpretation that the respective filtering of x and ỹ with
reduced GFT bases of different dimensions is equivalent.

5. CONCLUSION

We have introduced novel families of graph e-spline wavelets and
associated filterbanks which reveal e-spline-like functions on circu-
lant graphs and incorporate annihilation and reproduction properties
for complex exponential graph signals, complementing our previous
work on graph spline wavelets. Based on the derived constructions,
we have established the graph-FRI framework of sampling and re-
construction with graph coarsening on circulant graphs for classes
of (wavelet-)sparse graph signals. In future work, we aim to investi-
gate the existence of broader classes of graph signals which can be
annihilated by existing and/or evolved GWT constructions.
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