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ABSTRACT

Sampling of bandlimited signals whose frequency support is un-
known is called spectrum-blind sampling. It has attracted consider-
able attention due to its potential for sampling much lower than the
Nyquist rate. The minimum rate for spectrum-blind sampling has
been established as twice the measure of the frequency support. We
study this sampling problem and propose a novel sampling frame-
work by leveraging tools from modern coding theory. Our approach
is based on subsampling the outputs of a carefully designed sparse-
graph-coded filter bank. The key idea is to exploit, rather than avoid,
the aliasing artifacts induced by subsampling, which introduces lin-
ear mixing of spectral components in the form of parity constraints
for sparse-graph codes. Under the proposed sampling scheme, sig-
nal reconstruction becomes equivalent to the peeling decoding of
sparse-graph codes in erasure channels. As a result, we can simul-
taneously approach the minimum sampling rate, while also having
a computational cost that is linear in the number of samples. We
support our theoretical findings through numerical experiments.

Index Terms— Spectrum-blind sampling, sparse-graph codes,
peeling decoder.

1. INTRODUCTION

Sampling theory fundamentally connects the analog and digital
worlds. In particular, the classic Shannon-Nyquist sampling theo-
rem provides the foundation for digital signal processing through
analog-to-digital conversion (ADC). The theorem states that any
bandlimited signal can be reconstructed from its point-wise sam-
ples taken at or above the Nyquist rate of the signal. Advances in
signal processing and harmonic analysis have contributed signifi-
cantly to the field of sampling theory, leading to innovative sampling
methods [1, 2, 3].

Recently, spectrum-blind sampling has attracted considerable at-
tention, mostly because of possible rate reductions over the Nyquist
rate when the signal spectrum is sparse but its frequency support is
not known a priori. This important class of bandlimited signals is
commonly referred to as multiband signals, which consist of a union
of continuous spectral bands spread across a wide spectrum. There
have been prolific results on developing theories and algorithms for
sampling this class of signals. As shown in the seminal work by
Landau in 1960’s [4], any bandlimited signal with an arbitrary but
known frequency support can be recovered from samples taken at a
rate equal to the measure of its frequency support, also known as
the Landau rate. Interestingly, it was later pointed out in [5] that
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spectrum-blind sampling simply requires a minimum sampling rate
at twice the Landau rate.

In order to constructively approach this minimum rate, the au-
thors of [6, 7] showed that using multi-coset sampling, the signal can
be reconstructed from the discrete time Fourier transform (DTFT) of
the samples if the cosets are chosen carefully. Another approach was
proposed by the authors of [8, 9] where the problem of spectrum-
blind sampling was transformed to a compressed sensing problem
through modulation by random periodic functions and low pass fil-
tering. However, the proposed scheme incurs an extra logarithmic
factor away from the minimum rate.

In this work, we study this problem from a radically different
viewpoint based on modern coding theory. This seems at first glance
unrelated to the sampling problem. Connections between sampling
theory and coding theory have been unexplored in the literature. Our
goal is to shed new light on this fundamental connection. Our ap-
proach to the sampling problem is based on the use of sparse-graph
codes which have revolutionized the design of modern communi-
cation systems. This allows us to derive a novel sampling frame-
work that reflects interesting connections between the fundamental
problem of minimum-rate spectrum-blind sampling, and the classic
problem of designing capacity-achieving sparse-graph codes, such
as Low Density Parity Check (LDPC) codes [10, 11].

Our key contribution is the proposal of a new and novel multi-
channel sparse-graph-coded filter bank (cf., Section 2). Our results
show that any multiband signal can be sampled asymptotically at
the minimum rate in a probabilistic setting, where the probability of
reconstruction failure goes to zero. To the best of our knowledge,
this is the first constructive scheme that achieves the minimum rate
for spectrum-blind sampling, and also admits a fast reconstruction
algorithm.

1.1. Organization and Notation

The rest of this paper is organized as follows. In Section 2, we state
the problem and describe the underlying ideas leading to our results
and present the multiband filter bank sampling architecture. In Sec-
tion 3, we describe our design of sparse-graph coded filter banks that
leads to minimum rate sampling of wideband signals, and describe
an implementation for realizing such filters. We present empirical
validation of our results and conclude in Section 4.

Functions referred to by upper case letters are in Fourier domain,
e.g. X(f) = [T x(t) exp(—j2mft) dt is the Fourier transform

of x(t). Furthermore, z(t) s x (f) denotes Fourier transform
pairs. Lower case bold letters denote vectors, e.g., x. Upper case
bold letters denote matrices, e.g., A, and the ith column of a matrix
A is denoted as a;. We define the parametrized family of one-sided
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boxcar functions IIp(f) = 1if 0 < f < B and 0 otherwise.

2. MAIN IDEA AND FORMULATION

By BandLimited(fmax, fz) We denote complex-valued signals
z(t) € C whose frequency spectrum is zero outside [0, fmax),
ie, X(f) = 0if f < 0or f > fmax, and its frequency sup-
port F has Lebesgue measure |F| = f, and is of the form of the
union of a finite number of intervals with unknown locations. The
choice of the lower band limit 0 is without loss of generality be-
cause any given signal having known frequency limits ( fmin, fmax)
can be modulated to such a band. Note that the minimum rate for
blind sampling and reconstruction for BandLimited( fmax, fr) is
min(2fz, fmax) [5]-

Choose a positive integer N and divide the interval [0, fmax)
into N intervals of equal width B = fmax/N. We can write any
signal bandlimited to [0, fmax) as a sum

=z

—1
mk(t)e]?ﬂ'kBt7 (1)
0

z(t) =

el
Il

where each x(t) € C is bandlimited to [0, B). Because this is
a universal representation, x(¢) can be reconstructed if each z(t)
is recovered, and as each x(¢) is bandlimited to [0, B), it can be
recovered from its samples taken at rate B, i.e., zx[n] = xx(n/B).

In the case where the signal is from BandLimited(fmax, fz)
with f1, < fmax, the number of active components in (1) is signif-
icantly less than N as the frequency spectrum is sliced finely. Note
that, as the slicing becomes finer, namely, as N grows, we have the
ratio of the active components in (1) to N approach the frequency
occupancy ratio, that is, imy oo [supp (X[n])| /N = fL/fmax,
where x[n] € C¥ is the vector having its kth component equal to
zk[n].

2.1. Sampling Framework and Design Objective

Our sampling framework is summarized in Fig. 1 as a conceptual
representation, and a more practical implementation is described
in Section 3.4. A multiband signal is passed through a filter
bank consisting of M filters with frequency response H;(f) for
it =1,---, M. Filter bank outputs are sampled at B Hz to produce
M streams of samples {yi[n]}:cy ™, which are then input to
a non-linear reconstruction scheme. Note that with this sampling
scheme the aggregate sampling rate is f; = M B.

The goal is to design a blind, lossless sampling and reconstruc-
tion scheme that achieves a sampling rate approaching the minimum
rate and perfectly recovers the signal (with probability approach-
ing one). Given a reconstructed signal Z(t), the performance is
characterized by the triplet (fs,T,Pr), where fs is the sampling

B samples/sec

H(f) ]

reconstruction ——3(t)

Fig. 1: Proposed spectrum-blind sampling framework consists of a
sampling front-end and a reconstruction back-end. The front-end
takes sub-Nyquist samples of a carefully designed filter bank, and
the back-end performs decoding. Note that this is a conceptual rep-
resentation (please refer to Section 3.4 for details).
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Fig. 2: (a) The aliased spectra of the output samples in different sam-
pling channels and the original spectrum. Each multiband sampling
filter passes a controlled subset of bands of the signal, and subsam-
pling introduces aliasing of these components, that is, introduces a
linear combination of the signals on the selected bands (cf., Sec-
tion 2.2). (b) Spectral aliasing induces a parity check constraints for
each sampling instant. The reconstruction is equivalent to finding the
sample values at the bands that satisfy the parity check constraints.
Letters r, g and b denote red, green and blue colors respectively.

x,[n] x,n]

rate, 1" is the reconstruction complexity in terms of arithmetic op-
erations per unit of time, and P is the failure probability Pr =
Pr (Z(t) # z(t)). The probability Pr is evaluated with respect to
the randomness associated with the sampling front-end design. In
other words, for a given multiband signal x(¢), our design generates
a random sampling front-end from a specific random ensemble and
produces an estimate Z(¢) with probability 1 — P approaching one
asymptotically. Some questions of interest are: (1) How to design
the filter response H; ( f) and how to choose the sampling rate B? (2)
How many filters (i.e., M) are necessary? (3) How are the design pa-
rameters B, M related to the minimum rate? (4) How to reconstruct

the signal given the filter bank output samples {y; [n]}felZ Mo

2.2. Design Philosophy Through an Example

Before answering these questions, we first explain our design philos-
ophy through a simple example with reference to Fig. 2a, where we
consider a signal from BandLimited (4B, 3B) with spectrum sup-
ported on the three bands each of width B. The support bands 0, 2
and 3 are color-coded in red, green and blue respectively.

For sampling, we use a filter bank with M = 3 channels, where
each filter has a frequency response H; (f) taking a multiband struc-
ture, where each band is also of width B. The filters have unity gain
H;(f) =1 in some bands and H;(f) = 0 elsewhere. For example,
in Fig. 2a, the first filter passes bands 0 and 2, the second filter passes
bands 1 and 2, and the third filter passes bands 0, 1 and 3. Conform-
ing with the multiband structure of the sampling filter, the associated
filter output is also (sub)-sampled at rate B. Clearly, sampling at rate
B results in aliasing of the output spectrum because the rate is below
the Nyquist rate 4 8. Due to the variations in the multiband structure
of sampling filters, each output stream of samples is a different linear
combination of signal components in a controlled selection of bands
0 to 3. For example, stream 1 is a linear combination of signals in
bands 0 and 2 (red and green), and stream 2 is equal to the signal in
band 2 (green) since there is no signal in band 1.

Later in this paper, it will become clear that the design of these
filters is guided by coding patterns derived from sparse-graph codes
that create careful aliasing (linear mixing) of the spectral compo-
nents. We highlight such mixing, as Fig. 2b, in the form of sparse-
graph codes, where each color mixture corresponds to a parity check
constraint of the codeword for each sampling snapshot n.

This sparse bipartite graph structure allows the decoder to re-
cover the signal in each frequency band through a fast peeling oper-
ation on the edges of the graph. We describe the peeling process in
our running example of Fig. 2b. If the decoder knows that a certain
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stream of samples is of a single color, it can peel off its contribu-
tion from other streams of samples, hopefully uncovering new sin-
gle color streams. This is similar in spirit to the idea of a “peeling
decoder” in packet communication systems. For clarity of presen-
tation, let us first assume that we have an oracle that informs the
decoder if an output stream comprises of a single band or not, and if
so, which band it comes from (we will later show how to get rid of
this oracle). Given this oracle, we perform the following:

e The second stream y2[n] is composed of a single component com-
ing from band 2 (the aliasing leads to the combination of the signal
at bands 1 and 2, but the band 1 has no signal), hence we recover
the samples y2[n] of the spectral component at band 2. Because
the component at band 2 contributes to the first stream y1 [n], we
peel off the contribution of y2[n] from the first stream y1 [n];

e The new first stream after the peeling becomes y;[n] = yi1[n] —
y2[n], which is from band 0 based on the given mechanism. We
then peel y [n] from stream y3[n], which leads to a single com-
ponent coming from band 3;

e By peeling stream y3[n], the entire signal is recovered.

2.3. Generalized Sampling Architecture and Observation Model

To leverage the sparsity of the active components in order to reduce
the sampling rate, define M multiband filters, h;(t), where each fil-
ter has frequency response a weighted combination of ideal bandpass
filters, i.e., Hi(f) = > py cixllp(f — kB), where ¢; j, € C.

Under this design, M channels, each sampled at rate B sam-
ples/second, result in a total sampling rate fs = MB sam-
ples/second. We want to design the filter bank such that as the
number of slices N grows, f, approaches the minimum rate 2fz,.
The resulting M samples output from the filter bank at each sam-
pling instant n € Z can be described as

N—-1
viln] = Y cinanln]. @)
k=0

The multiple measurements obtained through the use of M different
h;(t) can be represented for each sampling instant n as

y[n] = Cx[n], (3)

where C € CM*V,

The problem then boils down to choosing a “good” C matrix
that enables recovery of x[n] from y[n]. When the frequency sup-
port is sparse, the vector x[n] is going to be sparse for each n. This
sparse recovery problem has been studied extensively in compressed
sensing where there is prolific literature with various measurement
scaling results for M [3]. A typical construction is to choose C from
some random matrix ensemble. For example, the authors of [8] have
proposed using such randomized constructions that require oversam-
pling with a logarithmic factor log(/N) with respect to the number
of slices, which does not achieve the minimum rate. Another ap-
proach is to design C with a Vandermonde structure, where, by using
Prony’s method, one can recover the signal using samples twice the
number of non-zero entries in x[n] [12]. However, Prony’s method
requires solving for the roots of a polynomial. As the number of
slices increases, numerical precision of the roots needs to scale with
N, increasing the computational complexity and the numerical in-
stability. To approach the minimum sampling rate together with low
computational complexity, we use our framework developed in [13]
based on sparse-graph codes which circumvents the above issues.

3. SPARSE-GRAPH-CODED FILTER BANK DESIGN

The compressed sensing formulation in (3) captures the filter bank
architecture by the M x N coefficient matrix C, and the goal is to
recover the baseband samples x[n] in each band from the filter bank
outputs y[n]. More specifically, each row of the matrix C charac-
terizes the frequency response of the sampling filter in each channel
of the filter bank. In the following, we discuss how to design the
frequency response of the filter bank.

3.1. Filter Bank Response

We specify the filter bank frequency response in terms of its magni-
tude and phase response over N bands.

In our sampling framework, the magnitude response is sparse-
graph encoded to introduce peeling-friendly aliasing. We specify R
magnitude responses for the sampling filters through an R x N ma-
trix H that is equal to the adjacency matrix of a bipartite graph G
consisting of IV left nodes and R right nodes. The left nodes corre-
spond to the N frequency slices, and the right nodes correspond to
the channels of the filter bank. In Section 3.2, we describe two graph
ensembles for choosing H that results in peeling-friendly aliasing.

Based on each magnitude response (row of H), we design P
sampling filters that have the same magnitude response but different
phase responses. The P phase responses are appropriately chosen in
order to determine from its output if it contains the samples of only
one frequency slice and further determine which frequency slice it
is. We represent P phase responses with a P x N matrix S such
that there are a total of M = RP sampling channels. The concrete
design of S is given in Section 3.3.

Mathematically, given a magnitude response matrix H and a
phase response matrix S, the response of the filter bank constructed
as above is given by the matrix

C=HKXS, 4)

where X is the Khatri-Rao product defined as HX S = [h; ®
s1 -+ hy®sy], and ® is the Kronecker product. Next we formally
define our filter bank ensemble using this construction.

3.2. Oracle-based Reconstruction with Blind Sampling

We first present the design of the magnitude response matrix H of
our sampling filter bank for blind sampling with the help of a single-
ton oracle during reconstruction (as in the example in Section 2.2,
the oracle tells the decoder the band location and sample value if
an output stream comprises of a single band). We will then discuss
in Section 3.3 how to design and use the phase response matrix S
to complete our sampling framework without using the single-ton
oracle. We define the regular graph ensemble for designing H [14].

Definition 1 (Regular graph ensemble). Given N left nodes, R right
nodes and an integer d > 2, regular graph ensemble g,?;;(R, d) is
the set of all graphs where each left node is connected to d right
nodes.

Theorem 1. Given the filter bank ensemble designed by regular
graph ensemble gﬁ;(R, d), with the help of a single-ton oracle in
reconstruction, any signal x(t) € BandLimited(fmax, fz) can be
sampled at rate fs = 1.23 f, and perfectly reconstructed with prob-
ability at least 1 — O ((fmax/fr)/N) by performing O(f) arith-
metic operations per unit time.
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Fig. 3: (a) Input signal’s magnitude spectrum (top) and Nyquist rate samples (bottom). (b) Output samples of two channels of the sparse-
graph-coded filter bank, sampled at rate 10™%. (c) Nyquist rate samples corresponding the region in the green box in (a); red lines correspond
to the Nyquist rate samples of the input signal, and the blue circles correspond to the reconstruction using our proposed sampling framework.

The proof of this theorem is omitted for length considerations,
and it can be found in [15]. The theorem states that, assuming a
single-ton oracle in reconstruction, a multiband signal can be sam-
pled a constant 1.23 factor away from the Landau rate. To lower
this constant factor, the filter bank can be constructed based on the
following graph ensemble.

Definition 2 (Irregular graph ensemble). Given N left nodes, R
right nodes and an integer D > 2, the edge set in the irregular
graph ensemble g,ﬁ\;eg(R7 D) is characterized by the degree sequence
A =1/ (L(D)(j—1)) forj =2,---,D + 1, where \; denotes
the fraction of edges that connect to a left node with degree j and
L(D) = Z]D:l 1/j is for normalization, i.e., to have 3 ;- , Aj = 1.

Filter bank designed based on Gy, (R, D) allows sampling at

rate fs = (1 + ¢)fr for any € > 0, while the probability of perfect
reconstruction is at least 1 — O((fmax/fr)/N). Arithmetic opera-
tions per unit time is still O( fz). However, design through irregular
graph ensemble requires large N. Hence, we will use the regular
graph ensemble for empirical validations.

3.3. Blind Reconstruction with Blind Sampling

We now describe the design and use of the phase response S of the

filter bank to replace the oracle in reconstruction. Choose the 2 x N

phase response matrix S as the first two rows of the N-point inverse

DFT matrix as [S]x,c = exp(j2nkf/N). Filter bank construction

(4) implies that for each filter with a magnitude response specified

as a row of H and a constant phase response, there is an extra filter

whose magnitude response is identical but with a piecewise constant
phase response over the N bands. This introduces a factor P = 2 in
the number of sampling channels. The resulting sampling rate fs is
twice that of the oracle-based reconstruction with blind sampling.
Using the sample outputs y,[n] = [y-[n],ve,r[n]]" for each

pair of the filters with the same magnitude response r = 1,--- | R,

we perform the following tests to reliably identify the single-ton bins

and obtain the correct band-sample pair for any single-ton:

e Zero-ton test: The bin is a zero-ton if ||y, [n]|| = 0;

e Multi-ton test: The bin is a multi-ton as long as |yc,r[n]| #
lyr[n]| and/or Z (ye,r[n]/yr[n]) # 0 mod 27/N. The multi-
ton test fails when the relative phase is a multiple of 27 /N,

e Single-ton test: After the zero-ton and multi-ton tests, if |y.,»[n]| =
lyr[n]| and ye,r[n]/yr[n] = exp(j27¢/N), for some £ € [N],
the measurement bin is detected as a single-ton with the band-
sample pair kr[n] = 252 (ye.r[n]/yr[n]), k. [n]] = yr[n],
which is then used for peeling.

By performing these tests on all the outputs of the sampling
channels, the baseband samples from each band can be reconstructed
via peeling in the same manner as the oracle-based reconstruction.

3.4. Implementation

The operations described above can be implemented similar to the
modulated wideband converter architecture of [8].

Let h(t) be an ideal one-sided lowpass filter, with frequency re-
sponse H(f) = I (f). Letting p;(¢t) € R, 4 = 1,--- , M de-
note periodic signals with period T, = N/ fmax = 1/B, that is,
pi(t) = pi(t — Tp), we define modulated and then filtered signals
yi(t), i =1,--- M, as yi(t) & (x(t) x pi(t)) * h(t). Note that
y:(t) is bandlimited to [0, B) and can be recovered from its samples
taken at rate B, i.e., y;[n] = yi(n/B) = y:(nT}).

Because p;(t) is periodic with T, = 1/B, it can be written
as a Fourier series ps(t) = > 7o __ ci,k exp(—j2nBkt), where
ci,r, are Fourier series coefficients of the signal p; (¢), that is, ¢; x =
(1/T5) ftT:"O pi(t) exp(j2n Bkt) dt. Using the Fourier series expan-

sion for p; (t), we get z(t) x p;(t) PN >ore L CikX(f+EB).
Hence, the spectrum of y; (¢) satisfies Y (f) = > 7o cox X (f +
kB)Ig(f). Furthermore, because X (f) is zero outside [0, fmax),
we can have contribution only for £ = 0,--- ;N — 1. Hence, we
have k € {0,---, N — 1} in the above expression. To simplify the
notation, define X (f) = X(f + kB)Ilg(f) hence we can write
Yi(f) = S ry ¢k Xk (f) which yields the same relation as (2).

4. EMPIRICAL VALIDATION AND CLOSING REMARKS

In this section we present a numerical experiment validating the per-
formance of our spectrum-blind sampling and reconstruction frame-
work based on sparse-graph-coded filter banks. We generate a ran-
dom signal from BandLimited(1,0.1) having a piecewise constant
spectrum on 10 disjoint frequency bands occupying a total of 1/10
of the interval [0, 1). The frequency spectrum and the Nyquist rate
samples of the input signal is shown in Fig. 3a. We choose number
disjoint frequency slices N = 1000 and use M = 284 channels de-
signed through the regular graph ensemble. The sampling rate at the
output of each filter is 1/N. Samples from a choice of two channels
of the filter bank are shown in Fig. 3b. The aggregate sampling rate
from this setting is equal to fs = fmaxM/N = 0.284.

Fig. 3c shows the Nyquist samples from the original signal to-
gether with the reconstruction from samples obtained by the sparse-
graph-coded filter bank. As can be seen, Nyquist rate samples, hence
the whole time domain signal, can be recovered spectrum-blind from
samples taken at rate 0.284. Our result in Theorem 1 implies a rate
of 0.246 for this signal model. The difference is due to finite slicing
of the spectrum; as we increase IV the empirical aggregate sampling
rate fs approaches the theoretical value.

As a concluding remark, the algorithm can be made robust to
noise and non-ideal filters by constructing the phase response S
through robust single-ton bin detection designs described in [13].
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